如图,平行四边形纸片 的边 , 的长分别是 和 ,将其四个角向内对折后,点 与点 重合于点 ,点 与点 重合于点 .四条折痕围成一个“信封四边形” ,其顶点分别在平行四边形 的四条边上,则 .
如图,在 中,已知 .
(1)实践与操作:作 的平分线交 于点 ,在 上截取 ,连接 ;(要求:尺规作图,保留作图痕迹,不写作法)
(2)猜想并证明:猜想四边形 的形状,并给予证明.
平行四边形 中, 、 是两条对角线,现从以下四个关系① ;② ;③ ;④ 中随机取出一个作为条件,即可推出平行四边形 是菱形的概率为
A. B. C. D.1
平行四边形ABCD的两个顶点A、C在反比例函数 图象上,点B、D在x轴上,且B、D两点关于原点对称,AD交y轴于P点
(1)已知点A的坐标是(2,3),求k的值及C点的坐标;
(2)在(1)的条件下,若△APO的面积为2,求点D到直线AC的距离.
如图,在 中, , ,垂足分别为 , ,且 .
(1)求证: 是菱形;
(2)若 , ,求 的面积.
如图,四边形 为平行四边形,连接 ,且 .请用尺规完成基本作图:作出 的角平分线与 交于点 .连接 交 于点 ,交 于点 ,猜想线段 和线段 的数量关系,并证明你的猜想.(尺规作图保留作图痕迹,不写作法)
如图是由边长为1的小正方形构成的 的网格,点 , 均在格点上.
(1)在图1中画出以 为边且周长为无理数的 ,且点 和点 均在格点上(画出一个即可).
(2)在图2中画出以 为对角线的正方形 ,且点 和点 均在格点上.
如图,在平行四边形 中, 为 边的中点,连接 ,若 的延长线和 的延长线相交于点 .
(1)求证: ;
(2)连接 和 相交于点为 ,若 的面积为2,求平行四边形 的面积.
如图, 是 的直径,过点 作 的切线 ,点 是射线 上的动点,连接 ,过点 作 ,交 于点 ,连接 .
(1)求证: 是 的切线;
(2)当四边形 是平行四边形时,求 的度数.
如图,在 中, 为 的中点,连接 并延长交 的延长线于点 ,连接 , ,若 ,求证:四边形 是矩形.
如图, 是 的边 的中点,延长 交 的延长线于点 .
(1)求证: .
(2)若 , , ,求 的长.