如图,四边形 是平行四边形,以点 为圆心、 的长为半径画弧交 于点 ,再分别以点 , 为圆心、大于 的长为半径画弧,两弧交于点 ,作射线 交 于点 ,连接 .下列结论中不一定成立的是
A. B. C. 平分 D.
如图, 的对角线 、 相交于点 , 交 于点 ,若 , 的周长等于5,则 的周长等于 .
如图,在 中, , , 是 所在平面内一点,以 , , , 为顶点的四边形是平行四边形,则 的长为 .
如图,在 中, AB AD.
(1)用尺规完成以下基本作图:在 AB上截取 AE,使得 AE= AD;作∠ BCD的平分线交 AB于点 F.(保留作图痕迹,不写作法)
(2)在(1)所作的图形中,连接 DE交 CF于点 P,猜想△ CDP按角分类的类型,并证明你的结论.
如图,在 中, , , ,点 在 边上(不与点 重合),以 为对角线作平行四边形 ,连接 交 于点 .设 , ,则 与 之间的函数关系图象大致为
A.B.
C.D.
点 是平行四边形 的对角线 所在直线上的一个动点(点 不与点 、 重合),分别过点 、 向直线 作垂线,垂足分别为点 、 .点 为 的中点.
(1)如图1,当点 与点 重合时,线段 和 的关系是 ;
(2)当点 运动到如图2所示的位置时,请在图中补全图形并通过证明判断(1)中的结论是否仍然成立?
(3)如图3,点 在线段 的延长线上运动,当 时,试探究线段 、 、 之间的关系.
如图, 中, , ,连接 ,分别以点 和点 为圆心,大于 的长为半径作弧,两弧相交于点 , ,作直线 ,交 于点 ,连接 ,则 的周长是 .
如图1,平行四边形 中, , , ,点 在边 上运动,以 为圆心, 为半径的 与对角线 交于 , 两点.
(1)如图2,当 与边 相切于点 时,求 的长;
(2)不难发现,当 与边 相切时, 与平行四边形 的边有三个公共点,随着 的变化, 与平行四边形 的边的公共点的个数也在变化,若公共点的个数为4,直接写出相对应的 的值的取值范围 .
如图,四边形 为平行四边形,连接 ,且 .请用尺规完成基本作图:作出 的角平分线与 交于点 .连接 交 于点 ,交 于点 ,猜想线段 和线段 的数量关系,并证明你的猜想.(尺规作图保留作图痕迹,不写作法)
如图是由边长为1的小正方形构成的 的网格,点 , 均在格点上.
(1)在图1中画出以 为边且周长为无理数的 ,且点 和点 均在格点上(画出一个即可).
(2)在图2中画出以 为对角线的正方形 ,且点 和点 均在格点上.
如图,在平行四边形 中, 为 边的中点,连接 ,若 的延长线和 的延长线相交于点 .
(1)求证: ;
(2)连接 和 相交于点为 ,若 的面积为2,求平行四边形 的面积.
如图, 是 的直径,过点 作 的切线 ,点 是射线 上的动点,连接 ,过点 作 ,交 于点 ,连接 .
(1)求证: 是 的切线;
(2)当四边形 是平行四边形时,求 的度数.
如图,在 中, 为 的中点,连接 并延长交 的延长线于点 ,连接 , ,若 ,求证:四边形 是矩形.
如图, 是 的边 的中点,延长 交 的延长线于点 .
(1)求证: .
(2)若 , , ,求 的长.