如图①,在中,,,点、分别在、边上,,连接、、,点、、分别是、、的中点,连接、、.
(1)与的数量关系是 .
(2)将绕点逆时针旋转到图②和图③的位置,判断与有怎样的数量关系?写出你的猜想,并利用图②或图③进行证明.
如图,在中,,是的中点,点在上,,,垂足分别为,,连接.则下列结论中:
①;
②;
③;
④;
⑤若平分,则;
⑥,
正确的有 .(只填序号)
如图, 中, , 垂直平分 ,交线段 于点 (点 与点 不重合),点 为 上一点,点 为 上一点(点 与点 不重合),且 .
(1)如图1,当 时,线段 和 的数量关系是 .
(2)如图2,当 时,猜想线段 和 的数量关系,并加以证明.
(3)若 , , ,请直接写出 的长.
已知:在四边形 中,对角线 、 相交于点 ,且 ,作 ,垂足为点 , 与 交于点 , .
(1)如图1,求证: ;
(2)如图2, 是 的中线,若 , ,在不添加任何辅助线的情况下,请直接写出图2中四个三角形,使写出的每个三角形的面积都等于 面积的2倍.
如图1,在△ ABC中,设∠ A、∠ B、∠ C的对边分别为 a, b, c,过点 A作 AD⊥ BC,垂足为 D,会有sin∠ C= ,则
S △ ABC= BC× AD= × BC× ACsin∠ C= absin∠ C,
即 S △ ABC= absin∠ C
同理 S △ ABC= bcsin∠ A
S △ ABC= acsin∠ B
通过推理还可以得到另一个表达三角形边角关系的定理﹣余弦定理:
如图2,在△ ABC中,若∠ A、∠ B、∠ C的对边分别为 a, b, c,则
a 2= b 2+ c 2﹣2 bccos∠ A
b 2= a 2+ c 2﹣2 accos∠ B
c 2= a 2+ b 2﹣2 abcos∠ C
用上面的三角形面积公式和余弦定理解决问题:
(1)如图3,在△ DEF中,∠ F=60°,∠ D、∠ E的对边分别是3和8.求 S △ DEF和 DE 2.
解: S △ DEF= EF× DFsin∠ F= ;
DE 2= EF 2+ DF 2﹣2 EF× DFcos∠ F= .
(2)如图4,在△ ABC中,已知 AC> BC,∠ C=60°,△ ABC'、△ BCA'、△ ACB'分别是以 AB、 BC、 AC为边长的等边三角形,设△ ABC、△ ABC'、△ BCA'、△ ACB'的面积分别为 S 1、 S 2、 S 3、 S 4,求证: S 1+ S 2= S 3+ S 4.
如图,在四边形 中, , , 、 分别是 、 的中点,连接 、 、 .若四边形 的面积为6,则 的面积为
A.2B. C. D.3
如图,在△ ABC与△ ADE中, AB= AC, AD= AE,∠ BAC=∠ DAE,且点 D在 AB上,点 E与点 C在 AB的两侧,连接 BE, CD,点 M、 N分别是 BE、 CD的中点,连接 MN, AM, AN.
下列结论:①△ ACD≌△ ABE;②△ ABC∽△ AMN;③△ AMN是等边三角形;④若点 D是 AB的中点,则 S △ ABC=2 S △ ABE.
其中正确的结论是 .(填写所有正确结论的序号)
【发现】如图①,已知等边 ,将直角三角板的 角顶点 任意放在 边上(点 不与点 、 重合),使两边分别交线段 、 于点 、 .
(1)若 , , ,则 ;
(2)求证: .
【思考】若将图①中的三角板的顶点 在 边上移动,保持三角板与边 、 的两个交点 、 都存在,连接 ,如图②所示,问:点 是否存在某一位置,使 平分 且 平分 ?若存在,求出 的值;若不存在,请说明理由.
【探索】如图③,在等腰 中, ,点 为 边的中点,将三角形透明纸板的一个顶点放在点 处(其中 ,使两条边分别交边 、 于点 、 (点 、 均不与 的顶点重合),连接 .设 ,则 与 的周长之比为 (用含 的表达式表示).
将在同一平面内如图放置的两块三角板绕公共顶点 旋转,连接 , .探究 与 的比是否为定值.
(1)两块三角板是完全相同的等腰直角三角板时, 是否为定值?如果是,求出此定值,如果不是,说明理由.(图①
(2)一块是等腰直角三角板,另一块是含有 角的直角三角板时, 是否为定值?如果是,求出此定值,如果不是,说明理由.(图②
(3)两块三角板中, , , , , , , , 为常数), 是否为定值?如果是,用含 , , , 的式子表示此定值(直接写出结论,不写推理过程),如果不是,说明理由.(图③
如图,等腰中,,,点在线段上运动(不与、重合),将与分别沿直线、翻折得到与,给出下列结论:
①;
②的大小不变;
③面积的最小值为 ;
④当点在的中点时,是等边三角形,
其中所有正确结论的序号是 .
如图,射线 和射线 相交于点 , ,且 .点 是射线 上的动点(点 不与点 和点 重合),作射线 ,并在射线 上取一点 ,使 ,连接 , .
(1)如图①,当点 在线段 上, 时,请直接写出 的度数;
(2)如图②,当点 在线段 上, 时,请写出线段 , , 之间的数量关系,并说明理由;
(3)当 , 时,请直接写出 的值.
如图, 是等边三角形, ,动点 从点 出发,以 的速度沿 向点 匀速运动,过点 作 ,交折线 于点 ,以 为边作等边三角形 ,使点 , 在 异侧.设点 的运动时间为 , 与 重叠部分图形的面积为 .
(1) 的长为 (用含 的代数式表示).
(2)当点 落在边 上时,求 的值.
(3)求 关于 的函数解析式,并写出自变量 的取值范围.
如图,在 和 中, , , .连接 ,连接 并延长交 , 于点 , .若 恰好平分 ,则下列结论错误的是
A. |
|
B. |
|
C. |
|
D. |
|
如图,在 中, , ,点 , 分别在 , 上,且 .
(1)如图1,求证: ;
(2)如图2, 是 的中点,求证: ;
(3)如图3, , 分别是 , 的中点,若 , ,求 的面积.