如图,在 中, ,分别以点 、 为圆心,大于 长为半径作弧,两弧分别交于 、 两点,过 、 两点的直线交 于点 ,若 , ,则 的长为
A. B. C. D.
如图,在 中, , , , 平分 交 于 点, , 分别是 , 上的动点,则 的最小值为
A. B. C. D.6
如图, 中, 为钝角, ,点 是边 延长线上一点,以点 为顶点, 为边,在射线 下方作 .
(1)在射线 上取点 ,连接 交线段 于点 .
①如图1,若 ,请直接写出线段 与 的数量关系和位置关系;
②如图2,若 ,判断线段 与 的数量关系和位置关系,并说明理由;
(2)如图3,反向延长射线 ,交射线 于点 ,将 沿 方向平移,使顶点 落在点 处,记平移后的 为 ,将 绕点 顺时针旋转角 , 交线段 于点 , 交射线 于点 ,请直接写出线段 , 与 之间的数量关系.
三个形状大小相同的菱形按如图所示方式摆放,已知,菱形的较短对角线长为.若点落在的延长线上,则的周长为 .
如图, 中, , 平分 交 于点 ,按下列步骤作图:
步骤1:分别以点 和点 为圆心,大于 的长为半径作弧,两弧相交于 , 两点;
步骤2:作直线 ,分别交 , 于点 , ;
步骤3:连接 , .
若 , ,则线段 的长为
A. B. C. D.
如图, 为 的直径,弦 ,垂足为点 ,直线 与 的延长线交于点 ,且 .
(1)求证:直线 是 的切线.
(2)若 , ,求线段 的长.
在 中, , , ,若 ,如图1,则有 ;若 为锐角三角形时,小明猜想: ,理由如下:如图2,过点 作 于点 ,设 .在 中, ,在 中,
,
当 为锐角三角形时,
所以小明的猜想是正确的.
(1)请你猜想,当 为钝角三角形时, 与 的大小关系.
(2)温馨提示:在图3中,作 边上的高.
(3)证明你猜想的结论是否正确.
在数学拓展课上,小明发现:若一条直线经过平行四边形对角线的交点,则这条直线平分该平行四边形的面积.如图是由5个边长为1的小正方形拼成的图形, 是其中4个小正方形的公共顶点,小强在小明的启发下,将该图形沿着过点 的某条直线剪一刀,把它剪成了面积相等的两部分,则剪痕的长度是
A. |
|
B. |
|
C. |
|
D. |
|
勾股定理是人类最伟大的科学发现之一,在我国古算书《周髀算经》中早有记载.如图1,以直角三角形的各边为边分别向外作正方形,再把较小的两张正方形纸片按图2的方式放置在最大正方形内.若知道图中阴影部分的面积,则一定能求出
A. |
直角三角形的面积 |
B. |
最大正方形的面积 |
C. |
较小两个正方形重叠部分的面积 |
D. |
最大正方形与直角三角形的面积和 |
已知:如图,矩形 的对角线 , 相交于点 , , .
(1)求矩形对角线的长;
(2)过 作 于点 ,连结 .记 ,求 的值.
如图,在 中, , , ,点 在线段 上,且 , 是线段 上的一点,连接 ,把四边形 沿直线 翻折,得到四边形 ,当点 恰好落在线段 上时, .