初中数学

如图,在 ΔABC 中, C = 90 ° ,分别以点 A B 为圆心,大于 1 2 AB 长为半径作弧,两弧分别交于 M N 两点,过 M N 两点的直线交 AC 于点 E ,若 AC = 6 BC = 3 ,则 CE 的长为 (    )

A. 9 4 B. 11 2 C. 3 D. 3 2

来源:2016年辽宁省锦州市中考数学试卷
  • 更新:2021-05-15
  • 题型:未知
  • 难度:未知

如图,在 Rt Δ ABC 中, ACB = 90 ° AC = 6 BC = 8 AD 平分 CAB BC D 点, E F 分别是 AD AC 上的动点,则 CE + EF 的最小值为 (    )

A. 40 3 B. 15 4 C. 24 5 D.6

来源:2017年贵州省毕节市中考数学试卷
  • 更新:2021-04-27
  • 题型:未知
  • 难度:未知

如图,在半径为5的中,为弦的中点,若,则的长为  

来源:2019年四川省阿坝州中考数学试卷
  • 更新:2021-01-02
  • 题型:未知
  • 难度:未知

如图, ΔABC 中, BAC 为钝角, B = 45 ° ,点 P 是边 BC 延长线上一点,以点 C 为顶点, CP 为边,在射线 BP 下方作 PCF = B

(1)在射线 CF 上取点 E ,连接 AE 交线段 BC 于点 D

①如图1,若 AD = DE ,请直接写出线段 A CE 的数量关系和位置关系;

②如图2,若 AD = 2 DE ,判断线段 AB CE 的数量关系和位置关系,并说明理由;

(2)如图3,反向延长射线 CF ,交射线 BA 于点 C ' ,将 PCF 沿 CC ' 方向平移,使顶点 C 落在点 C ' 处,记平移后的 PCF P ' C ' F ' ,将 P ' C ' F ' 绕点 C ' 顺时针旋转角 α ( 0 ° < α < 45 ° ) C ' F ' 交线段 BC 于点 M C ' P ' 交射线 BP 于点 N ,请直接写出线段 BM MN CN 之间的数量关系.

来源:2017年辽宁省铁岭市中考数学试卷
  • 更新:2021-05-14
  • 题型:未知
  • 难度:未知

三个形状大小相同的菱形按如图所示方式摆放,已知,菱形的较短对角线长为.若点落在的延长线上,则的周长为  

来源:2019年浙江省温州市中考数学试卷
  • 更新:2021-01-02
  • 题型:未知
  • 难度:未知

如图, Rt Δ ABC 中, ACB = 90 ° CD 平分 ACB AB 于点 D ,按下列步骤作图:

步骤1:分别以点 C 和点 D 为圆心,大于 1 2 CD 的长为半径作弧,两弧相交于 M N 两点;

步骤2:作直线 MN ,分别交 AC BC 于点 E F

步骤3:连接 DE DF

AC = 4 BC = 2 ,则线段 DE 的长为 (    )

A. 5 3 B. 3 2 C. 2 D. 4 3

来源:2018年江苏省南通市中考数学试卷
  • 更新:2021-05-25
  • 题型:未知
  • 难度:未知

如图, AB O 的直径,弦 CD AB ,垂足为点 P ,直线 BF AD 的延长线交于点 F ,且 AFB = ABC

(1)求证:直线 BF O 的切线.

(2)若 CD = 2 3 OP = 1 ,求线段 BF 的长.

来源:2016年浙江省衢州市中考数学试卷
  • 更新:2021-05-24
  • 题型:未知
  • 难度:未知

ΔABC 中, BC = a AC = b AB = c ,若 C = 90 ° ,如图1,则有 a 2 + b 2 = c 2 ;若 ΔABC 为锐角三角形时,小明猜想: a 2 + b 2 > c 2 ,理由如下:如图2,过点 A AD CB 于点 D ,设 CD = x .在 Rt Δ ADC 中, A D 2 = b 2 x 2 ,在 Rt Δ ADB 中, A D 2 = c 2 ( a x ) 2

a 2 + b 2 = c 2 + 2 ax

a > 0 x > 0

2 ax > 0

a 2 + b 2 > c 2

ΔABC 为锐角三角形时, a 2 + b 2 > c 2

所以小明的猜想是正确的.

(1)请你猜想,当 ΔABC 为钝角三角形时, a 2 + b 2 c 2 的大小关系.

(2)温馨提示:在图3中,作 BC 边上的高.

(3)证明你猜想的结论是否正确.

来源:2016年贵州省六盘水市中考数学试卷
  • 更新:2021-04-27
  • 题型:未知
  • 难度:未知

在数学拓展课上,小明发现:若一条直线经过平行四边形对角线的交点,则这条直线平分该平行四边形的面积.如图是由5个边长为1的小正方形拼成的图形, P 是其中4个小正方形的公共顶点,小强在小明的启发下,将该图形沿着过点 P 的某条直线剪一刀,把它剪成了面积相等的两部分,则剪痕的长度是 (    )

A.

2 2

B.

5

C.

3 5 2

D.

10

来源:2019年浙江省湖州市中考数学试卷
  • 更新:2021-01-02
  • 题型:未知
  • 难度:未知

如图,在中,弦,点上移动,连结,过点于点,则的最大值为  

来源:2019年浙江省嘉兴市中考数学试卷
  • 更新:2021-01-02
  • 题型:未知
  • 难度:未知

勾股定理是人类最伟大的科学发现之一,在我国古算书《周髀算经》中早有记载.如图1,以直角三角形的各边为边分别向外作正方形,再把较小的两张正方形纸片按图2的方式放置在最大正方形内.若知道图中阴影部分的面积,则一定能求出 (    )

A.

直角三角形的面积

B.

最大正方形的面积

C.

较小两个正方形重叠部分的面积

D.

最大正方形与直角三角形的面积和

来源:2019年浙江省宁波市中考数学试卷
  • 更新:2021-01-02
  • 题型:未知
  • 难度:未知

已知:如图,矩形 ABCD 的对角线 AC BD 相交于点 O BOC = 120 ° AB = 2

(1)求矩形对角线的长;

(2)过 O OE AD 于点 E ,连结 BE .记 ABE = α ,求 tan α 的值.

来源:2021年浙江省金华市中考数学试卷
  • 更新:2021-08-18
  • 题型:未知
  • 难度:未知

如图, AB O 的直径,弦 CD AB 于点 E ,若 AB = 8 CD = 6 ,则 BE =   

来源:2016年贵州省安顺市中考数学试卷
  • 更新:2021-04-27
  • 题型:未知
  • 难度:未知

如图,在 Rt Δ ABC 中, BAC = 90 ° AB = 2 2 AC = 6 ,点 E 在线段 AC 上,且 AE = 1 D 是线段 BC 上的一点,连接 DE ,把四边形 ABDE 沿直线 DE 翻折,得到四边形 F GDE ,当点 G 恰好落在线段 AC 上时, AF =   

来源:2021年江苏省无锡市中考数学试卷
  • 更新:2021-08-20
  • 题型:未知
  • 难度:未知

如图,在 ΔABC 中, AB = AC ,以 AB 为直径的 O BC 相交于点 D ,过点 D O 的切线交 AC 于点 E

(1)求证: DE AC

(2)若 O 的半径为5, BC = 16 ,求 DE 的长.

来源:2020年山东省菏泽市中考数学试卷
  • 更新:2021-05-26
  • 题型:未知
  • 难度:未知

初中数学勾股定理试题