小颖同学在手工制作中,把一个边长为 的等边三角形纸片贴到一个圆形的纸片上,若三角形的三个顶点恰好都在这个圆上,则圆的半径为
A. B. C. D.
如图,已知等边 的边长是2,以 边上的高 为边作等边三角形,得到第一个等边△ ;再以等边△ 的 边上的高 为边作等边三角形,得到第二个等边△ ;再以等边△ 的 边上的高 为边作等边三角形,得到第三个等边△ ; .记△ 面积为 ,△ 面积为 ,△ 面积为 ,则 .
如图, 为等边三角形,点 从 出发,沿 作匀速运动,则线段 的长度 与运动时间 之间的函数关系大致是
A.B.
C.D.
和 是两个全等的等边三角形,将它们按如图的方式放置在等边三角形 内.若求五边形 的周长,则只需知道
A. 的周长B. 的周长
C.四边形 的周长D.四边形 的周长
如图,分别以等边三角形 的三个顶点为圆心,以边长为半径画弧,得到的封闭图形是莱洛三角形,若 ,则莱洛三角形的面积(即阴影部分面积)为
A. B. C. D.
已知等边三角形的边长为3,点 为等边三角形内任意一点,则点 到三边的距离之和为
A. B. C. D.不能确定
如图,在平面直角坐标系中,直线 与 轴交于点 ,以 为边长作等边三角形 ,过点 作 平行于 轴,交直线 于点 ,以 为边长作等边三角形 ,过点 作 平行于 轴,交直线 于点 ,以 为边长作等边三角形 , ,则点 的横坐标是 .
【发现】如图①,已知等边 ,将直角三角板的 角顶点 任意放在 边上(点 不与点 、 重合),使两边分别交线段 、 于点 、 .
(1)若 , , ,则 ;
(2)求证: .
【思考】若将图①中的三角板的顶点 在 边上移动,保持三角板与边 、 的两个交点 、 都存在,连接 ,如图②所示,问:点 是否存在某一位置,使 平分 且 平分 ?若存在,求出 的值;若不存在,请说明理由.
【探索】如图③,在等腰 中, ,点 为 边的中点,将三角形透明纸板的一个顶点放在点 处(其中 ,使两条边分别交边 、 于点 、 (点 、 均不与 的顶点重合),连接 .设 ,则 与 的周长之比为 (用含 的表达式表示).
在 中, , ,将 绕点 按顺时针方向旋转,得到 ,旋转角为 ,点 的对应点为点 ,点 的对应点为点 ,连接 , .
(1)如图,当 时,延长 交 于点 .
①求证: 是等边三角形;
②求证: , ;
③请直接写出 的长;
(2)在旋转过程中,过点 作 垂直于直线 ,垂足为点 ,连接 ,当 ,且线段 与线段 无公共点时,请直接写出 的值.
温馨提示:考生可以根据题意,在备用图中补充图形,以便作答.
已知: 是等边三角形,点 在直线 上,连接 ,以 为边作等边三角形 ,将线段 绕点 顺时针旋转 ,得到线段 ,连接 、 、 .
(1)如图1,当点 在线段 上时,求证: ;
(2)如图1,当点 在线段 上时,求证:四边形 是平行四边形;
(3)如图2,当点 在线段 延长线上时,四边形 还是平行四边形吗?如果是,请证明你的结论;如果不是,请说明理由.
如图,已知 ,点 在边 上, .过点 作 于点 ,以 为一边在 内作等边三角形 ,点 是 围成的区域(包括各边)内的一点,过点 作 交 于点 ,作 交 于点 .设 , ,则 的取值范围是 .
如图,在正方形 中,点 为对角线 上的一点,连接 , .
(1)如图1,求证: ;
(2)如图2,延长 交直线 于点 , 在直线 上,且 .
①求证: ;
②已知正方形 的边长为2,若点 在对角线 上移动,当 为等边三角形时,求线段 的长(直接写出结果,不必写出解答过程).