请阅读下列材料,并完成相应的任务:
阿基米德折弦定理
阿基米德 ,公元前 公元前212年,古希腊)是有史以来最伟大的数学家之一,他与牛顿、高斯并称为三大数学王子.
阿拉伯 年)的译文中保存了阿基米德折弦定理的内容,苏联在1964年根据 译本出版了俄文版《阿基米德全集》,第一题就是阿基米德折弦定理.
阿基米德折弦定理:如图1, 和 是 的两条弦(即折线 是圆的一条折弦), , 是 的中点,则从 向 所作垂线的垂足 是折弦 的中点,即 .下面是运用"截长法"证明 的部分证明过程.证明:如图2,在 上截取 ,连接 , , 和 .
是 的中点,
.
任务:
(1)请按照上面的证明思路,写出该证明的剩余部分;
(2)填空:如图3,已知等边 内接于 , , 为 上一点, , 于点 ,则 的周长是 .
我们规定:一个正边形为整数,的最短对角线与最长对角线长度的比值叫做这个正边形的“特征值”,记为,那么 .
如图, 是 的内接三角形, , 的半径为5,若点 是 上的一点,在 中, ,则 的长为
A. |
5 |
B. |
|
C. |
|
D. |
|
如图,在菱形中,,,点是这个菱形内部或边上的一点,若以点、、为顶点的三角形是等腰三角形,则、、两点不重合)两点间的最短距离为 .
如图,在平面直角坐标系中,点,的坐标分别为,,,,连接,以为边向上作等边三角形.
(1)求点的坐标;
(2)求线段所在直线的解析式.
在中,,.点是平面内不与点,重合的任意一点.连接,将线段绕点逆时针旋转得到线段,连接,,.
(1)观察猜想
如图1,当时,的值是 ,直线与直线相交所成的较小角的度数是 .
(2)类比探究
如图2,当时,请写出的值及直线与直线相交所成的较小角的度数,并就图2的情形说明理由.
(3)解决问题
当时,若点,分别是,的中点,点在直线上,请直接写出点,,在同一直线上时的值.
探究
(1)如图①,在等腰直角三角形中,,作平分交于点,点为射线上一点,以点为旋转中心将线段逆时针旋转得到线段,连接交射线于点,连接、
填空:
①线段、的数量关系为 .
②线段、的位置关系为 .
推广:
(2)如图②,在等腰三角形中,顶角,作平分交于点,点为外部射线上一点,以点为旋转中心将线段逆时针旋转度得到线段,连接、、请判断(1)中的结论是否成立,并说明理由.
应用:
(3)如图③,在等边三角形中,.作平分交于点,点为射线上一点,以点为旋转中心将线段逆时针旋转得到线段,连接交射线于点,连接、.当以、、为顶点的三角形与全等时,请直接写出的值.
如图,在等边三角形中,,点,分别是边,的中点,点,同时沿射线的方向以相同的速度运动,某一时刻分别运动到点,处,连接,,,.
(1)写出图1中的一对全等三角形;
(2)如图2所示,当点在线段延长线上时,画出示意图,判断(1)中所写的一对三角形是否仍然全等,并说明理由;
(3)在点运动的过程中,若是直角三角形,直接写出此时线段的长度.
如图,在等边三角形中,,点为边的中点,点为边上的任意一点(不与点,重合),若点关于直线的对称点恰好落在等边三角形的边上,则的长为 .
(1)发现:如图1,点 为线段 外一动点,且 , .
填空:当点 位于 时,线段 的长取得最大值,且最大值为 (用含 , 的式子表示)
(2)应用:点 为线段 外一动点,且 , ,如图2所示,分别以 , 为边,作等边三角形 和等边三角形 ,连接 , .
①请找出图中与 相等的线段,并说明理由;
②直接写出线段 长的最大值.
(3)拓展:如图3,在平面直角坐标系中,点 的坐标为 ,点 的坐标为 ,点 为线段 外一动点,且 , , ,请直接写出线段 长的最大值及此时点 的坐标.