初中数学

如图, AB O 的直径,点 C ,点 D O 上, AC ̂ = CD ̂ AD BC 相交于点 E AF O 相切于点 A ,与 BC 延长线相交于点 F

(1)求证: AE = AF

(2)若 EF = 12 sin ABF = 3 5 ,求 O 的半径.

来源:2020年辽宁省鞍山市中考数学试卷
  • 更新:2021-01-15
  • 题型:未知
  • 难度:未知

如图,在 ΔABC 中, AB = AC ,以 AB 为直径的 O 与边 BC AC 分别交于 D E 两点,过点 D DH AC 于点 H

(1)判断 DH O 的位置关系,并说明理由;

(2)求证: H CE 的中点;

(3)若 BC = 10 cos C = 5 5 ,求 AE 的长.

来源:2019年贵州省安顺市中考数学试卷
  • 更新:2021-05-19
  • 题型:未知
  • 难度:未知

初步尝试

(1)如图①,在三角形纸片中,,将折叠,使点与点重合,折痕为,则的数量关系为     

思考说理

(2)如图②,在三角形纸片中,,将折叠,使点与点重合,折痕为,求的值;

拓展延伸

(3)如图③,在三角形纸片中,,将沿过顶点的直线折叠,使点落在边上的点处,折痕为

①求线段的长;

②若点是边的中点,点为线段上的一个动点,将沿折叠得到△,点的对应点为点交于点,求的取值范围.

来源:2020年江苏省淮安市中考数学试卷
  • 更新:2020-12-31
  • 题型:未知
  • 难度:未知

如图,在中,,以为直径的于点,过点的切线交于点,连接

(1)求证:是等腰三角形;

(2)求证:

来源:2019年湖北省黄冈市中考数学试卷
  • 更新:2021-01-01
  • 题型:未知
  • 难度:未知

如图,在 Rt Δ ABC 中, C = 90 ° ,点 O AC 上,以 OA 为半径的半圆 O AB 于点 D ,交 AC 于点 E ,过点 D 作半圆 O 的切线 DF ,交 BC 于点 F

(1)求证: BF = DF

(2)若 AC = 4 BC = 3 CF = 1 ,求半圆 O 的半径长.

来源:2020年湖北省咸宁市中考数学试卷
  • 更新:2020-12-31
  • 题型:未知
  • 难度:未知

数学课上,张老师出示了问题:如图1, AC BD 是四边形 ABCD 的对角线,若 ACB = ACD = ABD = ADB = 60 ° ,则线段 BC CD AC 三者之间有何等量关系?

经过思考,小明展示了一种正确的思路:如图2,延长 CB E ,使 BE = CD ,连接 AE ,证得 ΔABE ΔADC ,从而容易证明 ΔACE 是等边三角形,故 AC = CE ,所以 AC = BC + CD

小亮展示了另一种正确的思路:如图3,将 ΔABC 绕着点 A 逆时针旋转 60 ° ,使 AB AD 重合,从而容易证明 ΔACF 是等边三角形,故 AC = CF ,所以 AC = BC + CD

在此基础上,同学们作了进一步的研究:

(1)小颖提出:如图4,如果把“ ACB = ACD = ABD = ADB = 60 ° ”改为“ ACB = ACD = ABD = ADB = 45 ° ”,其它条件不变,那么线段 BC CD AC 三者之间有何等量关系?针对小颖提出的问题,请你写出结论,并给出证明.

(2)小华提出:如图5,如果把“ ACB = ACD = ABD = ADB = 60 ° ”改为“ ACB = ACD = ABD = ADB = α ”,其它条件不变,那么线段 BC CD AC 三者之间有何等量关系?针对小华提出的问题,请你写出结论,不用证明.

来源:2017年山东省临沂市中考数学试卷
  • 更新:2021-05-16
  • 题型:未知
  • 难度:未知

如图1, AB O 的直径,直线 AM O 相切于点 A ,直线 BN O 相切于点 B ,点 C (异于点 A ) AM 上,点 D O 上,且 CD = CA ,延长 CD BN 相交于点 E ,连接 AD 并延长交 BN 于点 F

(1)求证: CE O 的切线;

(2)求证: BE = EF

(3)如图2,连接 EO 并延长与 O 分别相交于点 G H ,连接 BH .若 AB = 6 AC = 4 ,求 tan BHE

来源:2020年湖北省恩施州中考数学试卷
  • 更新:2020-12-31
  • 题型:未知
  • 难度:未知

如图,已知 AB = AC AD = AE BD CE 相交于点 O

(1)求证: ΔABD ΔACE

(2)判断 ΔBOC 的形状,并说明理由.

来源:2020年浙江省台州市中考数学试卷
  • 更新:2021-05-26
  • 题型:未知
  • 难度:未知

已知抛物线经过点和点,与轴交于另一点,顶点为

(1)求抛物线的解析式,并写出顶点的坐标;

(2)如图,点分别在线段上(点不与点重合),且,直接写出线段的长.

来源:2020年黑龙江省牡丹江市、鸡西市朝鲜族学校中考数学试卷
  • 更新:2021-01-01
  • 题型:未知
  • 难度:未知

相切于点,直线相离,于点,且交于点的延长线交直线于点

(1)求证:

(2)若的半径为3,求线段的长;

(3)若在上存在点,使是以为底边的等腰三角形,求的半径的取值范围.

来源:2019年四川省内江市中考数学试卷
  • 更新:2020-12-30
  • 题型:未知
  • 难度:未知

如图,在中,边上的高,边上的中线,且.求证:

(1)点的垂直平分线上;

(2)

来源:2019年四川省攀枝花市中考数学试卷
  • 更新:2020-12-30
  • 题型:未知
  • 难度:未知

如图是由边长为1的小正方形构成的网格,每个小正方形的顶点叫做格点.四边形的顶点在格点上,点是边与网格线的交点.请选择适当的格点,用无刻度的直尺在网格中完成下列画图,保留连线的痕迹,不要求说明理由.

(1)如图1,过点画线段,使,且

(2)如图1,在边上画一点,使

(3)如图2,过点画线段,使,且

来源:2019年湖北省武汉市中考数学试卷
  • 更新:2021-01-01
  • 题型:未知
  • 难度:未知

如图1,四边形 ABCD 的对角线 AC BD 相交于点 O OA = OC OB = OD + CD

(1)过点 A AE / / DC BD 于点 E ,求证: AE = BE

(2)如图2,将 ΔABD 沿 AB 翻折得到 ΔAB D '

①求证: B D ' / / CD

②若 A D ' / / BC ,求证: C D 2 = 2 OD · BD

来源:2020年山东省菏泽市中考数学试卷
  • 更新:2021-05-26
  • 题型:未知
  • 难度:未知

如图,在 ΔABC 中, AB = AC ,点 D E 分别在 AB AC 上, BD = CE BE CD 相交于点 O

(1)求证: ΔDBC ΔECB

(2)求证: OB = OC

来源:2019年江苏省无锡市中考数学试卷
  • 更新:2021-05-21
  • 题型:未知
  • 难度:未知

已知:如图,四边形 ABCD 是平行四边形,延长 BA 至点 E ,使 AE + CD = AD .连接 CE ,求证: CE 平分 BCD

来源:2016年四川省巴中市中考数学试卷
  • 更新:2021-04-20
  • 题型:未知
  • 难度:未知

初中数学等腰三角形的判定与性质解答题