初中数学

如图,抛物线 y = a x 2 + bx 2 x 轴交于 A B 两点,与 y 轴交于 C 点,已知 A ( 3 , 0 ) ,且 M ( 1 , 8 3 ) 是抛物线上另一点.

(1)求 a b 的值;

(2)连接 AC ,设点 P y 轴上任一点,若以 P A C 三点为顶点的三角形是等腰三角形,求 P 点的坐标;

(3)若点 N x 轴正半轴上且在抛物线内的一动点(不与 O A 重合),过点 N NH / / AC 交抛物线的对称轴于 H 点.设 ON = t ΔONH 的面积为 S ,求 S t 之间的函数关系式.

来源:2017年四川省眉山市中考数学试卷
  • 更新:2021-05-23
  • 题型:未知
  • 难度:未知

已知抛物线 c 1 的顶点为 A ( 1 , 4 ) ,与 y 轴的交点为 D ( 0 , 3 )

(1)求 c 1 的解析式;

(2)若直线 l 1 : y = x + m c 1 仅有唯一的交点,求 m 的值;

(3)若抛物线 c 1 关于 y 轴对称的抛物线记作 c 2 ,平行于 x 轴的直线记作 l 2 : y = n .试结合图形回答:当 n 为何值时, l 2 c 1 c 2 共有:①两个交点;②三个交点;③四个交点;

(4)若 c 2 x 轴正半轴交点记作 B ,试在 x 轴上求点 P ,使 ΔPAB 为等腰三角形.

来源:2017年湖南省张家界市中考数学试卷
  • 更新:2021-05-06
  • 题型:未知
  • 难度:未知

已知抛物线经过点,与轴交于另一点,顶点为

(1)求抛物线的解析式,并写出点的坐标;

(2)如图,点分别在线段点不与重合),且,则能否为等腰三角形?若能,求出的长;若不能,请说明理由;

(3)若点在抛物线上,且,试确定满足条件的点的个数.

来源:2019年湖北省十堰市中考数学试卷
  • 更新:2021-01-01
  • 题型:未知
  • 难度:未知

如图1,经过等边的顶点(圆心内),分别与的延长线交于点,连结于点

(1)求证:

(2)当时,求的长.

(3)设

①求关于的函数表达式;

②如图2,连结,若的面积是面积的10倍,求的值.

来源:2019年浙江省宁波市中考数学试卷
  • 更新:2021-01-02
  • 题型:未知
  • 难度:未知

如图,在平面直角坐标系中,抛物线轴交于两点(点在点的左侧),与轴交于点,对称轴与轴交于点,点在抛物线上.

(1)求直线的解析式;

(2)点为直线下方抛物线上的一点,连接.当的面积最大时,连接,点是线段的中点,点上的一点,点上的一点,求的最小值;

(3)点是线段的中点,将抛物线沿轴正方向平移得到新抛物线经过点的顶点为点.在新抛物线的对称轴上,是否存在点,使得为等腰三角形?若存在,直接写出点的坐标;若不存在,请说明理由.

来源:2017年重庆市中考数学试卷(b卷)
  • 更新:2021-01-02
  • 题型:未知
  • 难度:未知

综合与探究

如图,在平面直角坐标系中,已知抛物线 y = a x 2 + bx - 8 x 轴交于 A B 两点,与 y 轴交于点 C ,直线 l 经过坐标原点 O ,与抛物线的一个交点为 D ,与抛物线的对称轴交于点 E ,连接 CE ,已知点 A D 的坐标分别为 ( - 2 , 0 ) ( 6 , - 8 )

(1)求抛物线的函数表达式,并分别求出点 B 和点 E 的坐标;

(2)试探究抛物线上是否存在点 F ,使 ΔFOE ΔFCE ?若存在,请直接写出点 F 的坐标;若不存在,请说明理由;

(3)若点 P y 轴负半轴上的一个动点,设其坐标为 ( 0 , m ) ,直线 PB 与直线 l 交于点 Q ,试探究:当 m 为何值时, ΔOPQ 是等腰三角形.

来源:2016年山西省中考数学试卷
  • 更新:2020-12-30
  • 题型:未知
  • 难度:未知

如图,在△ABC中,AB=BC,点E在边AB上,EF⊥AC于F.

(1)尺规作图:过点A作AD⊥BC于点D(保留作图痕迹,不写作法);
(2)求证:∠CAD=∠AEF;
(3)若∠ABC=45°,AD与EF交于点G,求证:EG=2AF.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

初中数学等腰三角形的判定与性质解答题