如图,为的直径,为上的一点,,,的延长线交于点,连接.
(1)求证:是的切线;
(2)若为的中点,求的值.
我们知道,各个角都相等,各条边都相等的多边形叫做正多边形.对一个各条边都相等的凸多边形(边数大于,可以由若干条对角线相等判定它是正多边形.例如,各条边都相等的凸四边形,若两条对角线相等,则这个四边形是正方形.
(1)已知凸五边形的各条边都相等.
①如图1,若,求证:五边形是正五边形;
②如图2,若,请判断五边形是不是正五边形,并说明理由:
(2)判断下列命题的真假.(在括号内填写“真”或“假”
如图3,已知凸六边形的各条边都相等.
①若,则六边形是正六边形;
②若,则六边形是正六边形.
如图,在等腰中,,以为直径作交于点,过点作,垂足为.
(1)求证:是的切线.
(2)若,,求的长.
定义:有两个相邻内角互余的四边形称为邻余四边形,这两个角的夹边称为邻余线.
(1)如图1,在中,,是的角平分线,,分别是,上的点.
求证:四边形是邻余四边形.
(2)如图2,在的方格纸中,,在格点上,请画出一个符合条件的邻余四边形,使是邻余线,,在格点上.
(3)如图3,在(1)的条件下,取中点,连结并延长交于点,延长交于点.若为的中点,,,求邻余线的长.
如图,在中,.
(1)已知线段的垂直平分线与边交于点,连接,求证:.
(2)以点为圆心,线段的长为半径画弧,与边交于点,连接.若,求的度数.
如图,在中,,于点.
(1)若,求的度数;
(2)若点在边上,交的延长线于点.求证:.
如图,是以为底的等腰三角形,是边上的高,点、分别是、的中点.
(1)求证:四边形是菱形;
(2)如果四边形的周长为12,两条对角线的和等于7,求四边形的面积.
如图,在中,,点在上,以为半径作,与相交于点,与相切于点,过点作,垂足为.
(1)求证:是的切线;
(2)若,,求的半径.
如图,在中,,是的中点,与相切于点,交于点
(1)求证:是的切线;
(2)若,点是上一个动点(不与,两点重合),求的度数.
已知,分别与相切于点,,,为上一点.
(Ⅰ)如图①,求的大小;
(Ⅱ)如图②,为的直径,与相交于点.若,求的大小.
已知是的直径,是的切线,,交于点,是上一点,延长交于点.
(1)如图①,求和的大小;
(2)如图②,当时,求的大小.
如图,内接于,且为的直径,,与交于点,与过点的的切线交于点.
(1)若,,求的长.
(2)试判断与的数量关系,并说明理由.
请阅读下列材料,并完成相应的任务:
阿基米德折弦定理
阿基米德 ,公元前 公元前212年,古希腊)是有史以来最伟大的数学家之一,他与牛顿、高斯并称为三大数学王子.
阿拉伯 年)的译文中保存了阿基米德折弦定理的内容,苏联在1964年根据 译本出版了俄文版《阿基米德全集》,第一题就是阿基米德折弦定理.
阿基米德折弦定理:如图1, 和 是 的两条弦(即折线 是圆的一条折弦), , 是 的中点,则从 向 所作垂线的垂足 是折弦 的中点,即 .下面是运用"截长法"证明 的部分证明过程.证明:如图2,在 上截取 ,连接 , , 和 .
是 的中点,
.
任务:
(1)请按照上面的证明思路,写出该证明的剩余部分;
(2)填空:如图3,已知等边 内接于 , , 为 上一点, , 于点 ,则 的周长是 .