初中数学

ABCD 中, E F 分别是 AD BC 上的点,将平行四边形 ABCD 沿 EF 所在直线翻折,使点 B 与点 D 重合,且点 A 落在点 A ' 处.

(1)求证:△ A ' ED ΔCFD

(2)连接 BE ,若 EBF = 60 ° EF = 3 ,求四边形 BFDE 的面积.

来源:2018年四川省凉山州中考数学试卷
  • 更新:2021-05-23
  • 题型:未知
  • 难度:未知

已知 Rt Δ ABC 中, ACB = 90 ° ,点 D E 分别在 BC AC 边上,连接 BE AD 交于点 P ,设 AC = kBD CD = kAE k 为常数,试探究 APE 的度数:

(1)如图1,若 k = 1 ,则 APE 的度数为  

(2)如图2,若 k = 3 ,试问(1)中的结论是否成立?若成立,请说明理由;若不成立,求出 APE 的度数.

(3)如图3,若 k = 3 ,且 D E 分别在 CB CA 的延长线上,(2)中的结论是否成立,请说明理由.

来源:2018年四川省乐山市中考数学试卷
  • 更新:2021-05-23
  • 题型:未知
  • 难度:未知

如图,在 ABCD 中, E BC 的中点,连接 AE 并延长交 DC 的延长线于点 F ,连接 BF AC ,若 AD = AF ,求证:四边形 ABFC 是矩形.

来源:2020年山东省聊城市中考数学试卷
  • 更新:2021-05-26
  • 题型:未知
  • 难度:未知

如图,已知 1 = 2 3 = 4 ,求证: BC = BD

来源:2018年四川省乐山市中考数学试卷
  • 更新:2021-05-23
  • 题型:未知
  • 难度:未知

如图,在菱形 ABCD 中,过 B BE AD E ,过 B BF CD F

求证: AE = CF

来源:2018年四川省广元市中考数学试卷
  • 更新:2021-05-23
  • 题型:未知
  • 难度:未知

如图,四边形 ABCD 是正方形, M BC 上一点,连接 AM ,延长 AD 至点 E ,使得 AE = AM ,过点 E EF AM ,垂足为 F ,求证: AB = EF

来源:2018年四川省广安市中考数学试卷
  • 更新:2021-05-23
  • 题型:未知
  • 难度:未知

如图,在直角三角形 ABC 中, ACB = 90 ° ,点 H ΔABC 的内心,

AH 的延长线和三角形 ABC 的外接圆 O 相交于点 D ,连接 DB

(1)求证: DH = DB

(2)过点 D BC 的平行线交 AC AB 的延长线分别于点 E F ,已知 CE = 1 ,圆 O 的直径为5.

①求证: EF 为圆 O 的切线;

②求 DF 的长.

来源:2018年四川省德阳市中考数学试卷
  • 更新:2021-05-23
  • 题型:未知
  • 难度:未知

如图1,四边形 ABCD 的对角线 AC BD 相交于点 O OA = OC OB = OD + CD

(1)过点 A AE / / DC BD 于点 E ,求证: AE = BE

(2)如图2,将 ΔABD 沿 AB 翻折得到 ΔAB D '

①求证: B D ' / / CD

②若 A D ' / / BC ,求证: C D 2 = 2 OD · BD

来源:2020年山东省菏泽市中考数学试卷
  • 更新:2021-05-26
  • 题型:未知
  • 难度:未知

如图,点 E F 分别是矩形 ABCD 的边 AD AB 上一点,若 AE = DC = 2 ED ,且 EF EC

(1)求证:点 F AB 的中点;

(2)延长 EF CB 的延长线相交于点 H ,连接 AH ,已知 ED = 2 ,求 AH 的值.

来源:2018年四川省德阳市中考数学试卷
  • 更新:2021-05-23
  • 题型:未知
  • 难度:未知

阅读下列材料:

已知:如图1,等边△ A 1 A 2 A 3 内接于 O ,点 P A 1 A 2 ̂ 上的任意一点,连接 P A 1 P A 2 P A 3 ,可证: P A 1 + P A 2 = P A 3 ,从而得到: P A 1 + P A 2 P A 1 + P A 2 + P A 3 = 1 2 是定值.

(1)以下是小红的一种证明方法,请在方框内将证明过程补充完整;

证明:如图1,作 P A 1 M = 60 ° A 1 M A 2 P 的延长线于点 M

A 1 A 2 A 3 是等边三角形,

A 3 A 1 A 2 = 60 °

A 3 A 1 P = A 2 A 1 M

A 3 A 1 = A 2 A 1 A 1 A 3 P = A 1 A 2 P

A 1 A 3 P A 1 A 2 M

P A 3 = M A 2 = P A 2 + PM = P A 2 + P A 1

P A 1 + P A 2 P A 1 + P A 2 + P A 3 = 1 2 ,是定值.

(2)延伸:如图2,把(1)中条件“等边△ A 1 A 2 A 3 ”改为“正方形 A 1 A 2 A 3 A 4 ”,其余条件不变,请问: P A 1 + P A 2 P A 1 + P A 2 + P A 3 + P A 4 还是定值吗?为什么?

(3)拓展:如图3,把(1)中条件“等边△ A 1 A 2 A 3 ”改为“正五边形 A 1 A 2 A 3 A 4 A 5 ”,其余条件不变,则 P A 1 + P A 2 P A 1 + P A 2 + P A 3 + P A 4 + P A 5 =   (只写出结果).

来源:2018年四川省达州市中考数学试卷
  • 更新:2021-05-23
  • 题型:未知
  • 难度:未知

如图.已知 AB = DC A = D AC DB 相交于点 O ,求证: OBC = OCB

来源:2021年四川省乐山市中考数学试卷
  • 更新:2021-08-16
  • 题型:未知
  • 难度:未知

如图,四边形 ABCD 内接于 O 1 = 2 ,延长 BC 到点 E ,使得 CE = AB ,连接 ED

(1)求证: BD = ED

(2)若 AB = 4 BC = 6 ABC = 60 ° ,求 tan DCB 的值.

来源:2021年江苏省苏州市中考数学试卷
  • 更新:2021-08-20
  • 题型:未知
  • 难度:未知

如图,在 ΔABC 中, ACB = 90 ° ,点 E AC 的延长线上, ED AB 于点 D ,若 BC = ED ,求证: CE = DB

来源:2020年山东省菏泽市中考数学试卷
  • 更新:2021-05-26
  • 题型:未知
  • 难度:未知

如图,在 ΔABC 中, AB = BC ,以 AB 为直径的 O BC 于点 D ,交 AC 于点 F ,过点 C CE / / AB ,与过点 A 的切线相交于点 E ,连接 AD

(1)求证: AD = AE

(2)若 AB = 6 AC = 4 ,求 AE 的长.

来源:2018年四川省巴中市中考数学试卷
  • 更新:2021-05-23
  • 题型:未知
  • 难度:未知

如图,在 ABCD 中,过 B 点作 BM AC 于点 E ,交 CD 于点 M ,过 D 点作 DN AC 于点 F ,交 AB 于点 N

(1)求证:四边形 BMDN 是平行四边形;

(2)已知 AF = 12 EM = 5 ,求 AN 的长.

来源:2018年四川省巴中市中考数学试卷
  • 更新:2021-05-23
  • 题型:未知
  • 难度:未知

初中数学全等三角形的判定与性质解答题