如图①,在四边形 中, 于点 , ,点 为 中点, 为线段 上的点,且 .
(1)求证: 平分 ;
(2)若 ,连接 ,当四边形 为平行四边形时,求线段 的长;
(3)如图②,若点 为 的中点,连接 、 ,求证: .
已知: 是等边三角形,点 在直线 上,连接 ,以 为边作等边三角形 ,将线段 绕点 顺时针旋转 ,得到线段 ,连接 、 、 .
(1)如图1,当点 在线段 上时,求证: ;
(2)如图1,当点 在线段 上时,求证:四边形 是平行四边形;
(3)如图2,当点 在线段 延长线上时,四边形 还是平行四边形吗?如果是,请证明你的结论;如果不是,请说明理由.
四边形 是边长为2的正方形, 是 的中点,连结 ,点 是射线 上一动点(不与点 重合),连结 ,交 于点 .
(1)如图1,当点 是 边的中点时,求证: ;
(2)如图2,当点 与点 重合时,求 的长;
(3)在点 运动的过程中,当线段 为何值时, ?请说明理由.
已知在菱形 中, ,对角线 、 相交于点 ,点 是线段 上一动点(不与点 , 重合),连接 ,以 为边在 的右侧作菱形 ,且 .
(1)如图1,若点 落在线段 上,请判断:线段 与线段 的数量关系是
(2)如图2,若点 不在线段 上,其它条件不变,(1)中的结论是否仍然成立?请给出判断并予以证明;
(3)若点 , , 三点在同一直线上,其它条件不变,请直接写出线段 与线段 的数量关系.
在 中, 、 分别是 、 上的点,将平行四边形 沿 所在直线翻折,使点 与点 重合,且点 落在点 处.
(1)求证:△ ;
(2)连接 ,若 , ,求四边形 的面积.
如图,在 中, 和 的平分线 、 分别交 、 于点 、 ,点 、 分别为 、 的中点,连接 、 ,试判断 和 的数量关系和位置关系,并加以证明.
如图,在圆 中,弦 等于弦 ,且相交于点 ,其中 、 为 、 中点.
(1)证明: ;
(2)连接 、 、 ,若 ,证明:四边形 为矩形.
如图,在 中, , 是对角线 上的两点(点 在点 左侧),且 .
(1)求证:四边形 是平行四边形;
(2)当 , , 时,求 的长.
如图,在 中, , 与 相切于点 ,过点 作 的垂线交 的延长线于点 ,交 于点 ,连结 .
(1)求证: 是 的切线.
(2)若 , ,求 的长.
如图, 为等腰直角三角形,延长 至点 使 , 是矩形,其对角线 , 交于点 ,连接 交 于点 .
(1)求证: ;
(2)求 的值.
已知:如图,四边形 为平行四边形,点 、 、 、 在同一直线上, .
求证:(1) ;
(2) .