如图,正方形 边长是 ,点 从点 出发,沿 的路径运动,到 点停止运动,点 从点 出发,在 延长线上向右运动,点 与点 同时出发,点 停止运动时,点 也停止运动,点 ,点 的运动速度都是 ,下列函数图象中能反映 的面积 与运动时间 的函数关系的是
A.B.
C.D.
如图,在 中, , , , 是 的中点,直线 经过点 , , ,垂足分别为 , ,则 的最大值为
A. |
|
B. |
|
C. |
|
D. |
|
如图,在四边形中,,对角线的垂直平分线与边、分别相交于点、.
(1)求证:四边形是菱形;
(2)若,,求菱形的周长.
阅读理解:
问题:我们在研究“等腰三角形底边上的任意一点到两腰的距离和为定值”时,如图①,在 中, ,点 为底边 上的任意一点, 于点 , 于点 ,求证: 是定值,在这个问题中,我们是如何找到这一定值的呢?
思路:我们可以将底边 上的任意一点 移动到特殊的位置,如图②,将点 移动到底边的端点 处,这样,点 、 都与点 重合,此时, , ,这样 .因此,在证明这一命题时,我们可以过点 作 边上的高 (如图③ ,证明 即可.
请利用上述探索定值问题的思路,解决下列问题:
如图④,在正方形 中,一直角三角板的直角顶点 在对角线 上运动,一条直角边始终经过点 ,另一条直角边与射线 相交于点 ,过点 作 ,垂足为 .
(1)试猜想 与 的数量关系,并加以证明;
(2)当点 在 的延长线上运动时, 与 之间存在怎样的数量关系?请在图⑤中画出图形并直接写出结论;
(3)如图⑥所示,如果将正方形 改为矩形 , ,其它条件不变,请直接写出 与 的数量关系.
如图, 过 对角线的交点 ,交 于 ,交 于 ,若 的周长为18, ,则四边形 的周长为
A.14B.13C.12D.10
如图, 中,点 为边 的中点,连接 ,将 沿直线 翻折至 所在平面内,得 ,连接 ,分别与边 交于点 ,与 交于点 .若 , ,则 的长为 .
如图,在 中, , 是对角线 上的两点(点 在点 左侧),且 .
(1)求证:四边形 是平行四边形;
(2)当 , , 时,求 的长.
在① ,② ,③ 这三个条件中选择其中一个,补充在下面的问题中,并完成问题的解答.
问题:如图,在 中, ,点 在 边上(不与点 ,点 重合),点 在 边上(不与点 ,点 重合),连接 , , 与 相交于点 .若 ① ② 或 ③ ,求证: .
注:如果选择多个条件分别作答,按第一个解答计分.
如图,点 是 对角线的交点, 过点 分别交 , 于点 , ,下列结论成立的是
A. |
|
B. |
|
C. |
|
D. |
|
如图, 中, , ,点 ,点 ,反比例函数 的图象经过点 .
(1)求反比例函数的解析式;
(2)将直线 向上平移 个单位后经过反比例函数 图象上的点 ,求 , 的值.
如图,在等边三角形 中,点 是边 上一定点,点 是直线 上一动点,以 为一边作等边三角形 ,连接 .
【问题解决】
如图1,若点 在边 上,求证: ;
【类比探究】
如图2,若点 在边 的延长线上,请探究线段 , 与 之间存在怎样的数量关系?并说明理由.
如图,矩形 中, 是 的中点,延长 , 交于点 ,连接 , .
(1)求证:四边形 是平行四边形;
(2)当 平分 时,写出 与 的数量关系,并说明理由.
如图,在 中, ,点 、 分别是线段 、 的中点,过点 作 的平行线交 的延长线于点 ,连接 .
(1)求证: ;
(2)求证:四边形 为矩形.