初中数学

如图,在正方形 ABCD 中,对角线 AC BD 相交于点 O ,点 E BC 边上,且 CE = 2 BE ,连接 AE BD 于点 G ,过点 B BF AE 于点 F ,连接 OF 并延长,交 BC 于点 M ,过点 O OP OF DC 于点 N S 四边形 MONC = 9 4 ,现给出下列结论:① GE AG = 1 3 ;② sin BOF = 3 10 10 ;③ OF = 3 5 5 ;④ OG = BG ;其中正确的结论有 (    )

A.

①②③

B.

②③④

C.

①②④

D.

①③④

来源:2020年辽宁省朝阳市中考数学试卷
  • 更新:2021-01-15
  • 题型:未知
  • 难度:未知

如图,已知 AD = BC BD = AC .求证: ADB = BCA

来源:2020年云南省中考数学试卷
  • 更新:2021-05-26
  • 题型:未知
  • 难度:未知

在矩形 ABCD 中,点 E 是射线 BC 上一动点,连接 AE ,过点 B BF AE 于点 G ,交直线 CD 于点 F

(1)当矩形 ABCD 是正方形时,以点 F 为直角顶点在正方形 ABCD 的外部作等腰直角三角形 CFH ,连接 EH

①如图1,若点 E 在线段 BC 上,则线段 AE EH 之间的数量关系是    ,位置关系是   

②如图2,若点 E 在线段 BC 的延长线上,①中的结论还成立吗?如果成立,请给予证明;如果不成立,请说明理由;

(2)如图3,若点 E 在线段 BC 上,以 BE BF 为邻边作平行四边形 BEHF M BH 中点,连接 GM AB = 3 BC = 2 ,求 GM 的最小值.

来源:2020年辽宁省鞍山市中考数学试卷
  • 更新:2021-01-15
  • 题型:未知
  • 难度:未知

如图, AB O 的直径,弦 CD 垂直平分 OB ,垂足为点 E ,连接 OD BC ,若 BC = 1 ,则扇形 OBD 的面积为  

来源:2016年辽宁省营口市中考数学试卷
  • 更新:2021-05-15
  • 题型:未知
  • 难度:未知

如图,在菱形 ABCD 中, ADC = 60 ° ,点 E F 分别在 AD CD 上,且 AE = DF AF CE 相交于点 G BG AC 相交于点 H .下列结论:① ΔACF ΔCDE ;② C G 2 = GH · BG ;③若 DF = 2 CF ,则 CE = 7 GF ;④ S 四边形 ABCG = 3 4 B G 2 .其中正确的结论有     .(只填序号即可)

来源:2020年辽宁省鞍山市中考数学试卷
  • 更新:2021-01-15
  • 题型:未知
  • 难度:未知

如图,正方形 ABCD 中.点 E F 分别在 BC CD 上, ΔAEF 是等边三角形.连接 AC EF 于点 G .过点 G GH CE 于点 H ,若 S ΔEGH = 3 ,则 S ΔADF = (    )

A.6B.4C.3D.2

来源:2017年四川省攀枝花市中考数学试卷
  • 更新:2021-05-23
  • 题型:未知
  • 难度:未知

如图, ΔABC 中,点 D 为边 BC 的中点,连接 AD ,将 ΔADC 沿直线 AD 翻折至 ΔABC 所在平面内,得 ΔADC ' ,连接 CC ' ,分别与边 AB 交于点 E ,与 AD 交于点 O .若 AE = BE BC ' = 2 ,则 AD 的长为   

来源:2021年重庆市中考数学试卷(B卷)
  • 更新:2021-08-17
  • 题型:未知
  • 难度:未知

如图,在 ABCD 中, E F 是对角线 BD 上的两点(点 E 在点 F 左侧),且 AEB = CFD = 90 °

(1)求证:四边形 AECF 是平行四边形;

(2)当 AB = 5 tan ABE = 3 4 CBE = EAF 时,求 BD 的长.

来源:2021年浙江省温州市中考数学试卷
  • 更新:2021-08-17
  • 题型:未知
  • 难度:未知

在① AD = AE ,② ABE = ACD ,③ FB = FC 这三个条件中选择其中一个,补充在下面的问题中,并完成问题的解答.

问题:如图,在 ΔABC 中, ABC = ACB ,点 D AB 边上(不与点 A ,点 B 重合),点 E AC 边上(不与点 A ,点 C 重合),连接 BE CD BE CD 相交于点 F .若   AD = AE ( ABE = ACD FB = FC )  ,求证: BE = CD

注:如果选择多个条件分别作答,按第一个解答计分.

来源:2021年浙江省杭州市中考数学试卷
  • 更新:2021-08-18
  • 题型:未知
  • 难度:未知

如图,点 O ABCD 对角线的交点, EF 过点 O 分别交 AD BC 于点 E F ,下列结论成立的是 (    )

A.

OE = OF

B.

AE = BF

C.

DOC = OCD

D.

CFE = DEF

来源:2021年四川省南充市中考数学试卷
  • 更新:2021-08-16
  • 题型:未知
  • 难度:未知

如图, Rt Δ ABC 中, ACB = 90 ° AC = BC ,点 C ( 2 , 0 ) ,点 B ( 0 , 4 ) ,反比例函数 y = k x ( x > 0 ) 的图象经过点 A

(1)求反比例函数的解析式;

(2)将直线 OA 向上平移 m 个单位后经过反比例函数 y = k x ( x > 0 ) 图象上的点 ( 1 , n ) ,求 m n 的值.

来源:2021年山东省济宁市中考数学试卷
  • 更新:2021-08-16
  • 题型:未知
  • 难度:未知

如图,在等边三角形 ABC 中,点 E 是边 AC 上一定点,点 D 是直线 BC 上一动点,以 DE 为一边作等边三角形 DEF ,连接 CF

【问题解决】

如图1,若点 D 在边 BC 上,求证: CE + CF = CD

【类比探究】

如图2,若点 D 在边 BC 的延长线上,请探究线段 CE CF CD 之间存在怎样的数量关系?并说明理由.

来源:2020年山东省烟台市中考数学试卷
  • 更新:2021-05-26
  • 题型:未知
  • 难度:未知

如图,矩形 ABCD 中, E AD 的中点,延长 CE BA 交于点 F ,连接 AC DF

(1)求证:四边形 ACDF 是平行四边形;

(2)当 CF 平分 BCD 时,写出 BC CD 的数量关系,并说明理由.

来源:2018年江苏省连云港市中考数学试卷
  • 更新:2021-05-24
  • 题型:未知
  • 难度:未知

如图,在 ΔABC 中, AB = AC ,点 D E 分别是线段 BC AD 的中点,过点 A BC 的平行线交 BE 的延长线于点 F ,连接 CF

(1)求证: ΔBDE ΔFAE

(2)求证:四边形 ADCF 为矩形.

来源:2020年四川省遂宁市中考数学试卷
  • 更新:2021-05-21
  • 题型:未知
  • 难度:未知

Rt Δ ABC 中, BCA = 90 ° A < ABC D AC 边上一点,且 DA = DB O AB 的中点, CE ΔBCD 的中线.

(1)如图 a ,连接 OC ,请直接写出 OCE OAC 的数量关系:    

(2)点 M 是射线 EC 上的一个动点,将射线 OM 绕点 O 逆时针旋转得射线 ON ,使 MON = ADB ON 与射线 CA 交于点 N

①如图 b ,猜想并证明线段 OM 和线段 ON 之间的数量关系;

②若 BAC = 30 ° BC = m ,当 AON = 15 ° 时,请直接写出线段 ME 的长度(用含 m 的代数式表示).

来源:2019年辽宁省本溪市中考数学试卷
  • 更新:2021-05-11
  • 题型:未知
  • 难度:未知

初中数学全等三角形的判定与性质试题