初中数学

已知:如图,平行四边形 ABCD ,对角线 AC BD 相交于点 E ,点 G AD 的中点,连接 CG CG 的延长线交 BA 的延长线于点 F ,连接 FD

(1)求证: AB = AF

(2)若 AG = AB BCD = 120 ° ,判断四边形 ACDF 的形状,并证明你的结论.

来源:2018年山东省青岛市中考数学试卷
  • 更新:2021-05-17
  • 题型:未知
  • 难度:未知

如图, ΔADE ΔABC 绕点 A 按逆时针方向旋转 90 ° 得到,且点 B 的对应点 D 恰好落在 BC 的延长线上, AD EC 相交于点 P

(1)求 BDE 的度数;

(2) F EC 延长线上的点,且 CDF = DAC

①判断 DF PF 的数量关系,并证明;

②求证: EP PF = PC CF

来源:2020年福建省中考数学试卷
  • 更新:2021-05-26
  • 题型:未知
  • 难度:未知

将矩形 ABCD 绕点 A 顺时针旋转 α ( 0 ° < α < 360 ° ) ,得到矩形 AEFG

(1)如图,当点 E BD 上时.求证: FD = CD

(2)当 α 为何值时, GC = GB ?画出图形,并说明理由.

来源:2018年山东省临沂市中考数学试卷
  • 更新:2021-05-17
  • 题型:未知
  • 难度:未知

如图,在菱形 ABCD 中,过 B BE AD E ,过 B BF CD F

求证: AE = CF

来源:2018年四川省广元市中考数学试卷
  • 更新:2021-05-23
  • 题型:未知
  • 难度:未知

如图,正方形 ABCD 中, E BC 上的一点,连接 AE ,过 B 点作 BH AE ,垂足为点 H ,延长 BH CD 于点 F ,连接 AF

(1)求证: AE = BF

(2)若正方形边长是5, BE = 2 ,求 AF 的长.

来源:2018年山东省聊城市中考数学试卷
  • 更新:2021-05-17
  • 题型:未知
  • 难度:未知

如图,点 D AB 上, E AC 上, AB = AC B = C ,求证: AD = AE

来源:2021年吉林省中考数学试卷
  • 更新:2021-08-21
  • 题型:未知
  • 难度:未知

如图,四边形 ABCD 是正方形, M BC 上一点,连接 AM ,延长 AD 至点 E ,使得 AE = AM ,过点 E EF AM ,垂足为 F ,求证: AB = EF

来源:2018年四川省广安市中考数学试卷
  • 更新:2021-05-23
  • 题型:未知
  • 难度:未知

如图, ΔABC 中,点 D 为边 BC 的中点,连接 AD ,将 ΔADC 沿直线 AD 翻折至 ΔABC 所在平面内,得 ΔADC ' ,连接 CC ' ,分别与边 AB 交于点 E ,与 AD 交于点 O .若 AE = BE BC ' = 2 ,则 AD 的长为   

来源:2021年重庆市中考数学试卷(B卷)
  • 更新:2021-08-17
  • 题型:未知
  • 难度:未知

如图,在 ABCD 中, E F 是对角线 BD 上的两点(点 E 在点 F 左侧),且 AEB = CFD = 90 °

(1)求证:四边形 AECF 是平行四边形;

(2)当 AB = 5 tan ABE = 3 4 CBE = EAF 时,求 BD 的长.

来源:2021年浙江省温州市中考数学试卷
  • 更新:2021-08-17
  • 题型:未知
  • 难度:未知

在① AD = AE ,② ABE = ACD ,③ FB = FC 这三个条件中选择其中一个,补充在下面的问题中,并完成问题的解答.

问题:如图,在 ΔABC 中, ABC = ACB ,点 D AB 边上(不与点 A ,点 B 重合),点 E AC 边上(不与点 A ,点 C 重合),连接 BE CD BE CD 相交于点 F .若   AD = AE ( ABE = ACD FB = FC )  ,求证: BE = CD

注:如果选择多个条件分别作答,按第一个解答计分.

来源:2021年浙江省杭州市中考数学试卷
  • 更新:2021-08-18
  • 题型:未知
  • 难度:未知

如图,点 O ABCD 对角线的交点, EF 过点 O 分别交 AD BC 于点 E F ,下列结论成立的是 (    )

A.

OE = OF

B.

AE = BF

C.

DOC = OCD

D.

CFE = DEF

来源:2021年四川省南充市中考数学试卷
  • 更新:2021-08-16
  • 题型:未知
  • 难度:未知

如图, Rt Δ ABC 中, ACB = 90 ° AC = BC ,点 C ( 2 , 0 ) ,点 B ( 0 , 4 ) ,反比例函数 y = k x ( x > 0 ) 的图象经过点 A

(1)求反比例函数的解析式;

(2)将直线 OA 向上平移 m 个单位后经过反比例函数 y = k x ( x > 0 ) 图象上的点 ( 1 , n ) ,求 m n 的值.

来源:2021年山东省济宁市中考数学试卷
  • 更新:2021-08-16
  • 题型:未知
  • 难度:未知

如图,在等边三角形 ABC 中,点 E 是边 AC 上一定点,点 D 是直线 BC 上一动点,以 DE 为一边作等边三角形 DEF ,连接 CF

【问题解决】

如图1,若点 D 在边 BC 上,求证: CE + CF = CD

【类比探究】

如图2,若点 D 在边 BC 的延长线上,请探究线段 CE CF CD 之间存在怎样的数量关系?并说明理由.

来源:2020年山东省烟台市中考数学试卷
  • 更新:2021-05-26
  • 题型:未知
  • 难度:未知

如图,矩形 ABCD 中, E AD 的中点,延长 CE BA 交于点 F ,连接 AC DF

(1)求证:四边形 ACDF 是平行四边形;

(2)当 CF 平分 BCD 时,写出 BC CD 的数量关系,并说明理由.

来源:2018年江苏省连云港市中考数学试卷
  • 更新:2021-05-24
  • 题型:未知
  • 难度:未知

如图,在 ΔABC 中, AB = AC ,点 D E 分别是线段 BC AD 的中点,过点 A BC 的平行线交 BE 的延长线于点 F ,连接 CF

(1)求证: ΔBDE ΔFAE

(2)求证:四边形 ADCF 为矩形.

来源:2020年四川省遂宁市中考数学试卷
  • 更新:2021-05-21
  • 题型:未知
  • 难度:未知

初中数学全等三角形的判定与性质试题