如图, ΔADE 由 ΔABC 绕点 A 按逆时针方向旋转 90 ° 得到,且点 B 的对应点 D 恰好落在 BC 的延长线上, AD , EC 相交于点 P .
(1)求 ∠ BDE 的度数;
(2) F 是 EC 延长线上的点,且 ∠ CDF = ∠ DAC .
①判断 DF 和 PF 的数量关系,并证明;
②求证: EP PF = PC CF .
解方程:x(x+2)= 5x+10.
解方程:x2- 4x= 1.
已知,如图,AB、AC是⊙O得切线,B、C是切点,过上的任意一点P作⊙O的切线与AB、AC分别交于点D、E(1)连接OD和OE,若∠A=50°,求∠DOE的度数.(2)若AB=7,求△ADE的周长.
某商场以每件280元的价格购进一批商品,当每件商品售价为360元时,每月可售出60件,为了扩大销售,商场决定采取适当降价的方式促销,经调查发现,如果每件商品降价1元,那么商场每月就可以多售出5件.(1)降价前商场每月销售该商品的利润是多少元?(2)要使商场每月销售这种商品的利润达到7200元,且更有利于减少库存,则每件商品应降价多少元?
如图,在△ABC中,AC=BC,∠ACB=120°.(1)求作⊙O,使:圆心O在AB上,且⊙O经过点A和点C(尺规作图,保留作图痕迹,不写作法)(2)判断BC与⊙O的位置关系,并说明理由.