初中数学

如图, ΔABC 中,点 E BC 边上, AE = AB ,将线段 AC A 点旋转到 AF 的位置,使得 CAF = BAE ,连接 EF EF AC 交于点 G

(1)求证: EF = BC

(2)若 ABC = 65 ° ACB = 28 ° ,求 FGC 的度数.

来源:2019年江苏省苏州市中考数学试卷
  • 更新:2021-05-21
  • 题型:未知
  • 难度:未知

阅读下面材料:

小明遇到这样一个问题:

如图1, ΔABC 中, ACB = 90 ° ,点 D AB 上,且 BAC = 2 DCB ,求证: AC = AD

小明发现,除了直接用角度计算的方法外,还可以用下面两种方法:

方法1:如图2,作 AE 平分 CAB ,与 CD 相交于点 E

方法2:如图3,作 DCF = DCB ,与 AB 相交于点 F

(1)根据阅读材料,任选一种方法,证明 AC = AD

用学过的知识或参考小明的方法,解决下面的问题:

(2)如图4, ΔABC 中,点 D AB 上,点 E BC 上,且 BDE = 2 ABC ,点 F BD 上,且 AFE = BAC ,延长 DC FE ,相交于点 G ,且 DGF = BDE

①在图中找出与 DEF 相等的角,并加以证明;

②若 AB = kDF ,猜想线段 DE DB 的数量关系,并证明你的猜想.

来源:2018年辽宁省大连市中考数学试卷
  • 更新:2021-05-10
  • 题型:未知
  • 难度:未知

如图,在正方形 ABCD 中, AF = BE AE DF 相交于点 O

(1)求证: ΔDAF ΔABE

(2)求 AOD 的度数.

来源:2018年湖南省湘潭市中考数学试卷
  • 更新:2021-05-09
  • 题型:未知
  • 难度:未知

问题引入:

(1)如图①,在 ΔABC 中,点 O ABC ACB 平分线的交点,若 A = α ,则 BOC =   (用 α 表示);如图②, CBO = 1 3 ABC BCO = 1 3 ACB A = α ,则 BOC =   (用 α 表示)

拓展研究:

(2)如图③, CBO = 1 3 DBC BCO = 1 3 ECB A = α ,请猜想 BOC =   (用 α 表示),并说明理由.

类比研究:

(3) BO CO 分别是 ΔABC 的外角 DBC ECB n 等分线,它们交于点 O CBO = 1 n DBC BCO = 1 n ECB A = α ,请猜想 BOC =   

来源:2016年四川省内江市中考数学试卷
  • 更新:2021-04-23
  • 题型:未知
  • 难度:未知

已知AB是半径为1的圆O直径,C是圆上一点,DBC延长线上一点,过点D的直线交ACE点,且△AEF为等边三角形

(1)求证:△DFB是等腰三角形;

(2)若 DA 7 AF ,求证: CF AB

来源:2016年湖南省株洲市中考数学试卷
  • 更新:2021-04-15
  • 题型:未知
  • 难度:未知

如图,在△ ABC中,内角 ABC所对的边分别为 abc

(1)若 a=6, b=8, c=12,请直接写出∠ A与∠ B的和与∠ C的大小关系;

(2)求证:△ ABC的内角和等于180°;

(3)若 a a - b + c = 1 2 ( a + b + c ) c ,求证:△ ABC是直角三角形.

来源:2019年内蒙古呼和浩特市中考数学试卷
  • 更新:2021-04-09
  • 题型:未知
  • 难度:未知

如图,在 O 中,点 P AB ̂ 的中点,弦 AD PC 互相垂直,垂足为 M BC 分别与 AD PD 相交于点 E N ,连接 BD MN

(1)求证: N BE 的中点.

(2)若 O 的半径为8, AB ̂ 的度数为 90 ° ,求线段 MN 的长.

来源:2020年江苏省泰州市中考数学试卷
  • 更新:2021-01-08
  • 题型:未知
  • 难度:未知

已知 ΔABC 内接于 O AB = AC ABC 的平分线与 O 交于点 D ,与 AC 交于点 E ,连接 CD 并延长与 O 过点 A 的切线交于点 F ,记 BAC = α

(1)如图1,若 α = 60 °

①直接写出 DF DC 的值为   

②当 O 的半径为2时,直接写出图中阴影部分的面积为   

(2)如图2,若 α < 60 ° ,且 DF DC = 2 3 DE = 4 ,求 BE 的长.

来源:2020年湖北省孝感市中考数学试卷
  • 更新:2020-12-31
  • 题型:未知
  • 难度:未知

定义:有一组对角互余的四边形叫做对余四边形.

理解:

(1)若四边形 ABCD 是对余四边形,则 A C 的度数之和为        

证明:

(2)如图1, MN O 的直径,点 A B C O 上, AM CN 相交于点 D

求证:四边形 ABCD 是对余四边形;

探究:

(3)如图2,在对余四边形 ABCD 中, AB = BC ABC = 60 ° ,探究线段 AD CD BD 之间有怎样的数量关系?写出猜想,并说明理由.

来源:2020年湖北省咸宁市中考数学试卷
  • 更新:2020-12-31
  • 题型:未知
  • 难度:未知

如图,在中,边上的一点,平分,交边于点,连接

(1)求证:

(2)若,求的度数.

来源:2019年湖北省宜昌市中考数学试卷
  • 更新:2020-12-30
  • 题型:未知
  • 难度:未知

如图,点在一条直线上,交于点,求证:

来源:2019年湖北省武汉市中考数学试卷
  • 更新:2021-01-01
  • 题型:未知
  • 难度:未知

如图,已知⊙O是△ABC的外接圆,且BC为⊙O的直径,在劣弧上取一点D,使,将△ADC沿AD对折,得到△ADE,连接CE

(1)求证:CE是⊙O的切线;

(2)若CECD,劣弧的弧长为π,求⊙O的半径.

来源:2019年湖南省永州市中考数学试卷
  • 更新:2021-01-01
  • 题型:未知
  • 难度:未知

如图,的直径,上一点,过点,交的延长线于,交于点的中点,连接

(1)求证:的切线.

(2)若,求证:

来源:2019年山东省临沂市中考数学试卷
  • 更新:2021-01-01
  • 题型:未知
  • 难度:未知

如图,已知锐角三角形内接于圆于点,连接

(1)若

①求证:

②当时,求面积的最大值.

(2)点在线段上,,连接,设是正数),若,求证:

来源:2019年浙江省杭州市中考数学试卷
  • 更新:2021-01-02
  • 题型:未知
  • 难度:未知

如图,在中,于点

(1)若,求的度数;

(2)若点在边上,的延长线于点.求证:

来源:2019年重庆市中考数学试卷(b卷)
  • 更新:2021-01-02
  • 题型:未知
  • 难度:未知

初中数学三角形内角和定理解答题