问题引入:
(1)如图①,在 ΔABC 中,点 O 是 ∠ ABC 和 ∠ ACB 平分线的交点,若 ∠ A = α ,则 ∠ BOC = (用 α 表示);如图②, ∠ CBO = 1 3 ∠ ABC , ∠ BCO = 1 3 ∠ ACB , ∠ A = α ,则 ∠ BOC = (用 α 表示)
拓展研究:
(2)如图③, ∠ CBO = 1 3 ∠ DBC , ∠ BCO = 1 3 ∠ ECB , ∠ A = α ,请猜想 ∠ BOC = (用 α 表示),并说明理由.
类比研究:
(3) BO 、 CO 分别是 ΔABC 的外角 ∠ DBC 、 ∠ ECB 的 n 等分线,它们交于点 O , ∠ CBO = 1 n ∠ DBC , ∠ BCO = 1 n ∠ ECB , ∠ A = α ,请猜想 ∠ BOC = .
如下图,在平面直角坐标系xOy中,边长为2的正方形ABCD关于y轴对称,边AD在x轴上,点B在第四象限,直线BD与反比例函数的图象交于点B,E.(1)求反比例函数及直线BD的解析式;(2)求点E的坐标.
已知一次函数y1=x+b(b为常数)的图象与反比例函数(k为常数,k≠0)的图象相交于点P(3,1).(1)求这两个函数的解析式;(2)当x>3时,试判断y1与y2的大小,并说明理由.
如下图,在梯形OABC中,OC∥AB,OA=CB,点O为坐标原点,且A(2,-3),C(0,2).(1)求过点B的双曲线的解析式.(2)若将等腰梯形OABC向右平移5个单位,问:平移后的点C是否落在(1)中的双曲线上?并简述理由.
如下图,已知直线y=-x+3与反比例函数的图象交于点P(2,1),求反比例函数的关系式.
如下图,已知反比例函数(k≠0)的图象经过点(,8),直线y=-x+b经过反比例函数图象上的点Q(4,m),求反比例函数和直线的解析式.