问题引入:
(1)如图①,在 ΔABC 中,点 O 是 ∠ ABC 和 ∠ ACB 平分线的交点,若 ∠ A = α ,则 ∠ BOC = (用 α 表示);如图②, ∠ CBO = 1 3 ∠ ABC , ∠ BCO = 1 3 ∠ ACB , ∠ A = α ,则 ∠ BOC = (用 α 表示)
拓展研究:
(2)如图③, ∠ CBO = 1 3 ∠ DBC , ∠ BCO = 1 3 ∠ ECB , ∠ A = α ,请猜想 ∠ BOC = (用 α 表示),并说明理由.
类比研究:
(3) BO 、 CO 分别是 ΔABC 的外角 ∠ DBC 、 ∠ ECB 的 n 等分线,它们交于点 O , ∠ CBO = 1 n ∠ DBC , ∠ BCO = 1 n ∠ ECB , ∠ A = α ,请猜想 ∠ BOC = .
学完“证明(二)”一章后,老师布置了一道思考题:如图,点M、N分别在正三角形ABC的边BC.CA上,且BM=CN,AM、BN交于点Q。求证:∠BQM=60°。(1)请你完成这道思考题;(2)做完(1)后,同学们在老师的启发下进行了反思,提出了许多问题,如:①若将题中“BM=CN”与“∠BQM=60°”的位置交换,得到的是否仍是真命题?②若将题中的点M,N分别移动到BC,CA的延长线上,是否仍能得到∠BQM=60°?③若将题中的条件“点M,N分别在正三角形ABC的BC、CA边上”改为“点M,N分别在正方形ABCD的BC,CD边上”,是否仍能得到∠BQM=60°?对②,③进行证明。(自己画出对应的图形)
如图,在直角坐标系中,矩形OABC的顶点O与坐标原点重合,顶点A,C分别在坐标轴上,顶点B的坐标为(4,2),过点D(0,3)和E(6,0)的直线分别与AB,BC交于点M,N。(1)求直线DE的解析式和点M的坐标;(2)若反比例函数(x>0)的图象经过点M,求该反比例函数的解析式,并通过计算判断点N是否在该函数的图象上;(3)若反比例函数(x>0)的图象与△MNB有公共点,请直接写出m的取值范围。
如图,△ABC中,已知∠BAC=45°,AD⊥BC于D,BD=2,DC=3,求AD的长。小萍同学灵活运用了轴对称知识,将图形进行翻折变换,巧妙地解答了此题。(1)分别以AB、AC为对称轴,画出△ABD、△ACD的轴对称图形,D、C点的对称点分别为E、F,延长EB、FC相交于G点,求证:四边形AEGF是正方形;(2)设AD=x,利用勾股定理,建立关于x的方程模型,求出x的值。
如图,矩形ABCD中,P是线段AD上一动点,O为BD中点,PO的延长线交BC于Q。(1)求证:四边形PDQB为平行四边形;(2)若AD=8cm,AB=6cm,P从点A出发,以1cm/秒的速度向D运动(不与D重合)。设点P运动时间为t秒,请用t表示PD的长,并求t为何值时,四边形PBQD是菱形。
某商场将每件进价为80元的某种商品原来按每件100元出售,一天可售出100件,后来经过市场调查,发现这种商品单价每降1元,其销量可增加10件。(1)求商场经营该商品原来一天可获利润多少元?(2)设后来该商品每件降价x元,若商场经营该商品一天要获利润2160元,则每件商品应降价多少元?