定义:有一组对角互余的四边形叫做对余四边形.
理解:
(1)若四边形 ABCD 是对余四边形,则 ∠ A 与 ∠ C 的度数之和为 ;
证明:
(2)如图1, MN 是 ⊙ O 的直径,点 A , B , C 在 ⊙ O 上, AM , CN 相交于点 D .
求证:四边形 ABCD 是对余四边形;
探究:
(3)如图2,在对余四边形 ABCD 中, AB = BC , ∠ ABC = 60 ° ,探究线段 AD , CD 和 BD 之间有怎样的数量关系?写出猜想,并说明理由.
数学活动——求重叠部分的面积。 问题情境:数学活动课上,老师出示了一个问题: 如图(1),将两块全等的直角三角形纸片△ABC和△DEF叠放在一起,其中∠ACB=∠E=90°,BC=DE=6,AC=FE=8,顶点D与边AB的中点重合,DE经过点C,DF交AC于点G。 求重叠部分(△DCG)的面积。 (1)独立思考:请解答老师提出的问题。 (2)合作交流:“希望”小组受此问题的启发,将△DEF绕点D旋转,使DE⊥AB交AC于点H,DF交AC于点G,如图(2),你能求出重叠部分(△DGH)的面积吗?请写出解答过程。 (3)提出问题:老师要求各小组向“希望”小组学习,将△DEF绕点D旋转,再提出一个求重叠部分面积的问题。“爱心”小组提出的问题是:如图(3),将△DEF绕点D旋转,DE,DF分别交AC于点M,N,使DM=MN,求重叠部分(△DMN)的面积。 任务:①请解决“爱心”小组所提出的问题,直接写出△DMN的面积是 . ②请你仿照以上两个小组,大胆提出一个符合老师要求的问题,并在图中画出图形,标明字母,不必解答(注:也可在图(1)的基础上按顺时针方向旋转)。
某校实行学案式教学,需印制若干份数学学案。印刷厂有甲、乙两种收费方式,除按印数收取印刷费外,甲种方式还需收取制版费而乙种不需要。两种印刷方式的费用y(元)与印刷份数x(份)之间的函数关系如图所示: (1)填空:甲种收费方式的函数关系式是 . 乙种收费方式的函数关系式是 . (2)该校某年级每次需印制100~450(含100和450)份学案,选择哪种印刷方式较合算。
矩形纸片ABCD中,AB=5,AD=4. (1)如图1,四边形MNEF是在矩形纸片ABCD中裁剪出的一个正方形.你能否在该矩形中裁剪出一个面积最大的正方形,最大面积是多少?说明理由; (2)请用矩形纸片ABCD剪拼成一个面积最大的正方形.要求:在图2的矩形ABCD中画出裁剪线,并在网格中画出用裁剪出的纸片拼成的正方形示意图(使正方形的顶点都在网格的格点上).
△ABC是等边三角形,点A与点D的坐标分别是A(4,0),D(10,0). (1)如图1,当点C与点O重合时,求直线BD的解析式; (2)如图2,点C从点O沿y轴向下移动,当以点B为圆心,AB为半径的⊙B与y轴相切(切点为C)时,求点B的坐标; (3)如图3,点C从点O沿y轴向下移动,当点C的坐标为C时,求∠ODB的正切值.
分别以▱ABCD(∠CDA≠90°)的三边AB,CD,DA为斜边作等腰直角三角形,△ABE,△CDG,△ADF. (1)如图1,当三个等腰直角三角形都在该平行四边形外部时,连接GF,EF.请判断GF与EF的关系(只写结论,不需证明); (2)如图2,当三个等腰直角三角形都在该平行四边形内部时,连接GF,EF,(1)中结论还成立吗?若成立,给出证明;若不成立,说明理由.