如图,正方形 的边长为4,点 、 分别从点 、点 以相同速度同时出发,点 从点 向点 运动,点 从点 向点 运动,点 运动到 点时, 、 停止运动.连接 、 相交于点 ,连接 .有下列结论:① ;②点 随着点 、 的运动而运动,且点 的运动路径的长度为 ;③线段 的最小值为 ;④当线段 最小时, 的面积 .其中正确的命题有 .(填序号)
如图,正方形 和正方形 边长分别为 和 ,正方形 绕点 旋转,给出下列结论:① ;② ;③ ,其中正确结论是 (填序号)
将形状、大小完全相同的两个等腰三角形如图所示放置,点 在 边上, 绕点 旋转,腰 和底边 分别交 的两腰 , 于 , 两点,若 , , ,则 的最小值为 .
在 中,已知 和 分别是边 、 上的中线,且 ,垂足为 .若 , ,则线段 的长度为 .
如图,在正方形 中, ,把边 绕点 逆时针旋转 得到线段 ,连接 并延长交 于点 ,连接 ,则三角形 的面积为 .
我国南宋著名数学家秦九韶在他的著作《数书九章》一书中,给出了著名的秦九韶公式,也叫三斜求积公式,即如果一个三角形的三边长分别为 , , ,则该三角形的面积为 .现已知 的三边长分别为1,2, ,则 的面积为 .
如图,正方形 的边长为1,点 与原点重合,点 在 轴的正半轴上,点 在 轴的负半轴上,将正方形 绕点 逆时针旋转 至正方形 的位置, 与 相交于点 ,则点 的坐标为 .
如图,在平面直角坐标系中,正方形 的顶点 的坐标为 ,点 在 轴正半轴上,点 在第三象限的双曲线 上,过点 作 轴交双曲线于点 ,连接 ,则 的面积为 .
如图,将面积为 的矩形 沿对角线 折叠,点 的对应点为点 ,连接 交 于点 .若 ,则 的长为 .
如图,已知 ,点 , 分别在 , 上,且 ,将射线 绕点 逆时针旋转得到 ,旋转角为 且 ,作点 关于直线 的对称点 ,画直线 交 于点 ,连接 , ,有下列结论:
① ;
② 的大小随着 的变化而变化;
③当 时,四边形 为菱形;
④ 面积的最大值为 ;
其中正确的是 .(把你认为正确结论的序号都填上).