初中数学

如图,将矩形纸片 ABCD 沿直线 MN 折叠,顶点 B 恰好与 CD 边上的动点 P 重合(点 P 不与点 C D 重合),折痕为 MN ,点 M N 分别在边 AD BC 上,连接 MB MP BP BP MN 相交于点 F

(1)求证: ΔBFN ΔBCP

(2)①在图2中,作出经过 M D P 三点的 O (要求保留作图痕迹,不写做法);

②设 AB = 4 ,随着点 P CD 上的运动,若①中的 O 恰好与 BM BC 同时相切,求此时 DP 的长.

来源:2017年山东省淄博市中考数学试卷
  • 更新:2021-05-16
  • 题型:未知
  • 难度:未知

如图,在直角坐标系中, Rt Δ ABC 的直角边 AC x 轴上, ACB = 90 ° AC = 1 ,反比例函数 y = k x ( k > 0 ) 的图象经过 BC 边的中点 D ( 3 , 1 )

(1)求这个反比例函数的表达式;

(2)若 ΔABC ΔEFG 成中心对称,且 ΔEFG 的边 FG y 轴的正半轴上,点 E 在这个函数的图象上.

①求 OF 的长;

②连接 AF BE ,证明四边形 ABEF 是正方形.

来源:2017年山东省淄博市中考数学试卷
  • 更新:2021-05-16
  • 题型:未知
  • 难度:未知

已知:如图, E F ABCD 对角线 AC 上的两点,且 AE = CF ,连接 BE DF ,求证: BE = DF

来源:2017年山东省淄博市中考数学试卷
  • 更新:2021-05-16
  • 题型:未知
  • 难度:未知

已知正方形 ABCD P 为射线 AB 上的一点,以 BP 为边作正方形 BPEF ,使点 F 在线段 CB 的延长线上,连接 EA EC

(1)如图1,若点 P 在线段 AB 的延长线上,求证: EA = EC

(2)如图2,若点 P 在线段 AB 的中点,连接 AC ,判断 ΔACE 的形状,并说明理由;

(3)如图3,若点 P 在线段 AB 上,连接 AC ,当 EP 平分 AEC 时,设 AB = a BP = b ,求 a : b AEC 的度数.

来源:2017年山东省枣庄市中考数学试卷
  • 更新:2021-05-16
  • 题型:未知
  • 难度:未知

【操作发现】

(1)如图1, ΔABC 为等边三角形,先将三角板中的 60 ° 角与 ACB 重合,再将三角板绕点 C 按顺时针方向旋转(旋转角大于 0 ° 且小于 30 ° ) ,旋转后三角板的一直角边与 AB 交于点 D ,在三角板斜边上取一点 F ,使 CF = CD ,线段 AB 上取点 E ,使 DCE = 30 ° ,连接 AF EF

①求 EAF 的度数;

DE EF 相等吗?请说明理由;

【类比探究】

(2)如图2, ΔABC 为等腰直角三角形, ACB = 90 ° ,先将三角板的 90 ° 角与 ACB 重合,再将三角板绕点 C 按顺时针方向旋转(旋转角大于 0 ° 且小于 45 ° ) ,旋转后三角板的一直角边与 AB 交于点 D ,在三角板另一直角边上取一点 F ,使 CF = CD ,线段 AB 上取点 E ,使 DCE = 45 ° ,连接 AF EF .请直接写出探究结果:

EAF 的度数;

②线段 AE ED DB 之间的数量关系.

来源:2017年山东省烟台市中考数学试卷
  • 更新:2021-05-16
  • 题型:未知
  • 难度:未知

已知: AB O 的直径, AB = 2 ,弦 DE = 1 ,直线 AD BE 相交于点 C ,弦 DE O 上运动且保持长度不变, O 的切线 DF BC 于点 F

(1)如图1,若 DE / / AB ,求证: CF = EF

(2)如图2,当点 E 运动至与点 B 重合时,试判断 CF BF 是否相等,并说明理由.

来源:2017年山东省威海市中考数学试卷
  • 更新:2021-05-16
  • 题型:未知
  • 难度:未知

如图,已知 BA = AE = DC AD = EC CE AE ,垂足为 E

(1)求证: ΔDCA ΔEAC

(2)只需添加一个条件,即  ,可使四边形 ABCD 为矩形.请加以证明.

来源:2017年山东省日照市中考数学试卷(已修)
  • 更新:2021-05-16
  • 题型:未知
  • 难度:未知

数和形是数学的两个主要研究对象,我们经常运用数形结合、数形转化的方法解决一些数学问题.下面我们来探究“由数思形,以形助数”的方法在解决代数问题中的应用.

探究一:求不等式 | x 1 | < 2 的解集

(1)探究 | x 1 | 的几何意义

如图①,在以 O 为原点的数轴上,设点 A ' 对应的数是 x 1 ,由绝对值的定义可知,点 A ' 与点 O 的距离为 | x 1 | ,可记为 A ' O = | x 1 | .将线段 A ' O 向右平移1个单位得到线段 AB ,此时点 A 对应的数是 x ,点 B 对应的数是1.因为 AB = A ' O ,所以 AB = | x 1 | .因此, | x 1 | 的几何意义可以理解为数轴上 x 所对应的点 A 与1所对应的点 B 之间的距离 AB

(2)求方程 | x 1 | = 2 的解

因为数轴上3和 1 所对应的点与1所对应的点之间的距离都为2,所以方程的解为3, 1

(3)求不等式 | x 1 | < 2 的解集

因为 | x 1 | 表示数轴上 x 所对应的点与1所对应的点之间的距离,所以求不等式解集就转化为求这个距离小于2的点对应的数 x 的范围.

请在图②的数轴上表示 | x 1 | < 2 的解集,并写出这个解集.

探究二:探究 ( x a ) 2 + ( y b ) 2 的几何意义

(1)探究 x 2 + y 2 的几何意义

如图③,在直角坐标系中,设点 M 的坐标为 ( x , y ) ,过 M MP x 轴于 P ,作 MQ y 轴于 Q ,则 P 点坐标为 ( x , 0 ) Q 点坐标为 ( 0 , y ) OP = | x | OQ = | y | ,在 Rt Δ OPM 中, PM = OQ = | y | ,则 MO = O P 2 + P M 2 = | x | 2 + | y | 2 = x 2 + y 2 ,因此, x 2 + y 2 的几何意义可以理解为点 M ( x , y ) 与点 O ( 0 , 0 ) 之间的距离 MO

(2)探究 ( x 1 ) 2 + ( y 5 ) 2 的几何意义

如图④,在直角坐标系中,设点 A ' 的坐标为 ( x 1 , y 5 ) ,由探究二(1)可知, A ' O = ( x 1 ) 2 + ( y 5 ) 2 ,将线段 A ' O 先向右平移1个单位,再向上平移5个单位,得到线段 AB ,此时点 A 的坐标为 ( x , y ) ,点 B 的坐标为 ( 1 , 5 ) ,因为 AB = A ' O ,所以 AB = ( x 1 ) 2 + ( y 5 ) 2 ,因此 ( x 1 ) 2 + ( y 5 ) 2 的几何意义可以理解为点 A ( x , y ) 与点 B ( 1 , 5 ) 之间的距离 AB

(3)探究 ( x + 3 ) 2 + ( y 4 ) 2 的几何意义

请仿照探究二(2)的方法,在图⑤中画出图形,并写出探究过程.

(4) ( x a ) 2 + ( y b ) 2 的几何意义可以理解为:  

拓展应用:

(1) ( x 2 ) 2 + ( y + 1 ) 2 + ( x + 1 ) 2 + ( y + 5 ) 2 的几何意义可以理解为:点 A ( x , y ) 与点 E ( 2 , 1 ) 的距离和点 A ( x , y ) 与点 F   (填写坐标)的距离之和.

(2) ( x 2 ) 2 + ( y + 1 ) 2 + ( x + 1 ) 2 + ( y + 5 ) 2 的最小值为  (直接写出结果)

来源:2017年山东省青岛市中考数学试卷
  • 更新:2021-05-16
  • 题型:未知
  • 难度:未知

已知:如图,在菱形 ABCD 中,点 E O F 分别为 AB AC AD 的中点,连接 CE CF OE OF

(1)求证: ΔBCE ΔDCF

(2)当 AB BC 满足什么关系时,四边形 AEOF 是正方形?请说明理由.

来源:2017年山东省青岛市中考数学试卷
  • 更新:2021-05-16
  • 题型:未知
  • 难度:未知

已知:四边形 ABCD

求作:点 P ,使 PCB = B ,且点 P 到边 AD CD 的距离相等.

来源:2017年山东省青岛市中考数学试卷
  • 更新:2021-05-16
  • 题型:未知
  • 难度:未知

数学课上,张老师出示了问题:如图1, AC BD 是四边形 ABCD 的对角线,若 ACB = ACD = ABD = ADB = 60 ° ,则线段 BC CD AC 三者之间有何等量关系?

经过思考,小明展示了一种正确的思路:如图2,延长 CB E ,使 BE = CD ,连接 AE ,证得 ΔABE ΔADC ,从而容易证明 ΔACE 是等边三角形,故 AC = CE ,所以 AC = BC + CD

小亮展示了另一种正确的思路:如图3,将 ΔABC 绕着点 A 逆时针旋转 60 ° ,使 AB AD 重合,从而容易证明 ΔACF 是等边三角形,故 AC = CF ,所以 AC = BC + CD

在此基础上,同学们作了进一步的研究:

(1)小颖提出:如图4,如果把“ ACB = ACD = ABD = ADB = 60 ° ”改为“ ACB = ACD = ABD = ADB = 45 ° ”,其它条件不变,那么线段 BC CD AC 三者之间有何等量关系?针对小颖提出的问题,请你写出结论,并给出证明.

(2)小华提出:如图5,如果把“ ACB = ACD = ABD = ADB = 60 ° ”改为“ ACB = ACD = ABD = ADB = α ”,其它条件不变,那么线段 BC CD AC 三者之间有何等量关系?针对小华提出的问题,请你写出结论,不用证明.

来源:2017年山东省临沂市中考数学试卷
  • 更新:2021-05-16
  • 题型:未知
  • 难度:未知

如图,已知 AB / / DE AB = DE BE = CF ,求证: AC / / DF

来源:2017年山东省聊城市中考数学试卷
  • 更新:2021-05-16
  • 题型:未知
  • 难度:未知

已知 ΔABC ΔDEC 是两个大小不同的等腰直角三角形.

(1)如图①所示,连接 AE DB ,试判断线段 AE DB 的数量和位置关系,并说明理由;

(2)如图②所示,连接 DB ,将线段 DB D 点顺时针旋转 90 ° DF ,连接 AF ,试判断线段 DE AF 的数量和位置关系,并说明理由.

来源:2017年山东省莱芜市中考数学试卷
  • 更新:2021-05-16
  • 题型:未知
  • 难度:未知

实验探究:

(1)如图1,对折矩形纸片 ABCD ,使 AD BC 重合,得到折痕 EF ,把纸片展开;再一次折叠纸片,使点 A 落在 EF 上,并使折痕经过点 B ,得到折痕 BM ,同时得到线段 BN MN .请你观察图1,猜想 MBN 的度数是多少,并证明你的结论.

(2)将图1中的三角形纸片 BMN 剪下,如图2.折叠该纸片,探究 MN BM 的数量关系.写出折叠方案,并结合方案证明你的结论.

来源:2017年山东省济宁市中考数学试卷
  • 更新:2021-05-16
  • 题型:未知
  • 难度:未知

某学习小组的学生在学习中遇到了下面的问题:

如图1,在 ΔABC ΔADE 中, ACB = AED = 90 ° CAB = EAD = 60 ° ,点 E A C 在同一条直线上,连接 BD ,点 F BD 的中点,连接 EF CF ,试判断 ΔCEF 的形状并说明理由.

问题探究:

(1)小婷同学提出解题思路:先探究 ΔCEF 的两条边是否相等,如 EF = CF ,以下是她的证明过程

证明:延长线段 EF CB 的延长线于点 G

F BD 的中点,

BF = DF

ACB = AED = 90 °

ED / / CG

BGF = DEF

BFG = DFE

ΔBGF ΔDEF (   AAS   )

EF = FG

CF = EF = 1 2 EG

请根据以上证明过程,解答下列两个问题:

①在图1中作出证明中所描述的辅助线;

②在证明的括号中填写理由(请在 SAS ASA AAS SSS 中选择).

(2)在(1)的探究结论的基础上,请你帮助小婷求出 CEF 的度数,并判断 ΔCEF 的形状.

问题拓展:

(3)如图2,当 ΔADE 绕点 A 逆时针旋转某个角度时,连接 CE ,延长 DE BC 的延长线于点 P ,其他条件不变,判断 ΔCEF 的形状并给出证明.

来源:2017年山东省济南市中考数学试卷
  • 更新:2021-05-16
  • 题型:未知
  • 难度:未知

初中数学三角形解答题