初中数学

如图,在 ΔABC 中, BAC = 90 ° AB = AC = 5 ,点 D AC 上,且 AD = 2 ,点 E AB 上的动点,连结 DE ,点 F G 分别是 BC DE 的中点,连结 AG FG ,当 AG = FG 时,线段 DE 长为 (    )

A.

13

B.

5 2 2

C.

41 2

D.

4

来源:2021年浙江省嘉兴市中考数学试卷
  • 更新:2021-08-17
  • 题型:未知
  • 难度:未知

如图,每一小格的长度为1,点 A B 都在格点上,若 BC = 2 13 3 ,则 AC 的长为 (    )

A.

13

B.

4 13 3

C.

2 13

D.

3 13

来源:2021年山东省临沂市中考数学试卷
  • 更新:2021-08-16
  • 题型:未知
  • 难度:未知

若直角三角形的两边长分别是方程 x 2 - 7 x + 12 = 0 的两根,则该直角三角形的面积是 (    )

A.

6

B.

12

C.

12或 3 7 2

D.

6或 3 7 2

来源:2021年四川省雅安市中考数学试卷
  • 更新:2021-08-16
  • 题型:未知
  • 难度:未知

如图,在 ΔABC 中, AB = AC ΔDBC ΔABC 关于直线 BC 对称,连接 AD ,与 BC 相交于点 O ,过点 C CE CD ,垂足为 C AD 相交于点 E ,若 AD = 8 BC = 6 ,则 2 OE + AE BD 的值为 (    )

A.

4 3

B.

3 4

C.

5 3

D.

5 4

来源:2021年内蒙古乌兰察布市中考数学试卷
  • 更新:2021-08-18
  • 题型:未知
  • 难度:未知

在勾股定理的学习过程中,我们已经学会了运用如图图形,验证著名的勾股定理,这种根据图形直观推论或验证数学规律和公式的方法,简称为"无字证明".实际上它也可用于验证数与代数,图形与几何等领域中的许多数学公式和规律,它体现的数学思想是 (    )

A.

统计思想

B.

分类思想

C.

数形结合思想

D.

函数思想

来源:2021年山西省中考数学试卷
  • 更新:2021-08-16
  • 题型:未知
  • 难度:未知

两个直角三角板如图摆放,其中 BAC = EDF = 90 ° E = 45 ° C = 30 ° AB DF 交于点 M .若 BC / / EF ,则 BMD 的大小为 (    )

A.

60 °

B.

67 . 5 °

C.

75 °

D.

82 . 5 °

来源:2021年安徽省中考数学试卷
  • 更新:2021-08-18
  • 题型:未知
  • 难度:未知

如图是中国古代数学家赵爽用来证明勾股定理的弦图的示意图,它是由四个全等的直角三角形和一个小正方形 EFGH 组成,恰好拼成一个大正方形 ABCD .连结 EG 并延长交 BC 于点 M .若 AB = 13 EF = 1 ,则 GM 的长为 (    )

A.

2 2 5

B.

2 2 3

C.

3 2 4

D.

4 2 5

来源:2021年四川省资阳市中考数学试卷
  • 更新:2021-08-15
  • 题型:未知
  • 难度:未知

如图,点 B F C E 共线, B = E BF = EC ,添加一个条件,不能判断 ΔABC ΔDEF 的是 (    )

A.

AB = DE

B.

A = D

C.

AC = DF

D.

AC / / FD

来源:2021年重庆市中考数学试卷(A卷)
  • 更新:2021-08-17
  • 题型:未知
  • 难度:未知

如图,已知在 ΔABC 中, ABC < 90 ° AB BC BE AC 边上的中线.按下列步骤作图:①分别以点 B C 为圆心,大于线段 BC 长度一半的长为半径作弧,相交于点 M N ;②过点 M N 作直线 MN ,分别交 BC BE 于点 D O ;③连接 CO DE .则下列结论错误的是 (    )

A.

OB = OC

B.

BOD = COD

C.

DE / / AB

D.

DB = DE

来源:2021年浙江省湖州市中考数学试卷
  • 更新:2021-08-17
  • 题型:未知
  • 难度:未知

如图, A B C 是半径为1的 O 上的三个点,若 AB = 2 CAB = 30 ° ,则 ABC 的度数为 (    )

A.

95 °

B.

100 °

C.

105 °

D.

110 °

来源:2021年山东省聊城市中考数学试卷
  • 更新:2021-08-16
  • 题型:未知
  • 难度:未知

如图,菱形 ABCD 中, B = 60 ° ,点 P 从点 B 出发,沿折线 BC - CD 方向移动,移动到点 D 停止.在 ΔABP 形状的变化过程中,依次出现的特殊三角形是 (    )

A.

直角三角形 等边三角形 等腰三角形 直角三角形

B.

直角三角形 等腰三角形 直角三角形 等边三角形

C.

直角三角形 等边三角形 直角三角形 等腰三角形

D.

等腰三角形 等边三角形 直角三角形 等腰三角形

来源:2021年浙江省绍兴市中考数学试卷
  • 更新:2021-08-17
  • 题型:未知
  • 难度:未知

如图,在矩形 ABCD 中, AB = 5 AD = 3 ,点 E BC 上一点,把 ΔCDE 沿 DE 翻折,点 C 恰好落在 AB 边上的 F 处,则 CE 的长是 (    )

A.

1

B.

4 3

C.

3 2

D.

5 3

来源:2021年四川省遂宁市中考数学试卷
  • 更新:2021-08-16
  • 题型:未知
  • 难度:未知

如图,在 ΔABC 中, AB = 4 AC = 5 BC = 6 ,点 D E F 分别是 AB BC CA 的中点,连结 DE EF ,则四边形 ADEF 的周长为 (    )

A.

6

B.

9

C.

12

D.

15

来源:2021年浙江省衢州市中考数学试卷
  • 更新:2021-08-17
  • 题型:未知
  • 难度:未知

如图,把含 30 ° 的直角三角板 PMN 放置在正方形 ABCD 中, PMN = 30 ° ,直角顶点 P 在正方形 ABCD 的对角线 BD 上,点 M N 分别在 AB CD 边上, MN BD 交于点 O ,且点 O MN 的中点,则 AMP 的度数为 (    )

A.

60 °

B.

65 °

C.

75 °

D.

80 °

来源:2021年重庆市中考数学试卷(B卷)
  • 更新:2021-08-17
  • 题型:未知
  • 难度:未知

已知线段 AB ,按如下步骤作图:①作射线 AC ,使 AC AB ;②作 BAC 的平分线 AD ;③以点 A 为圆心, AB 长为半径作弧,交 AD 于点 E ;④过点 E EP AB 于点 P ,则 AP : AB = (    )

A.

1 : 5

B.

1 : 2

C.

1 : 3

D.

1 : 2

来源:2021年浙江省杭州市中考数学试卷
  • 更新:2021-08-18
  • 题型:未知
  • 难度:未知

初中数学三角形选择题