初中数学

《蝶几图》是明朝人戈汕所作的一部组合家具的设计图 ( " "为"蜨",同"蝶" ) ,它的基本组件为斜角形,包括长斜两只、右半斜两只、左半斜两只、闺一只、小三斜四只、大三斜两只,共十三只(图①中的"樣"和"隻"为"样"和"只" ) .图②为某蝶几设计图,其中 ΔABD ΔCBD 为"大三斜"组件 ( "一樣二隻"的大三斜组件为两个全等的等腰直角三角形),已知某人位于点 P 处,点 P 与点 A 关于直线 DQ 对称,连接 CP DP .若 ADQ = 24 ° ,则 DCP =   度.

来源:2021年湖南省株洲市中考数学试卷
  • 更新:2021-08-21
  • 题型:未知
  • 难度:未知

如图,在正方形 ABCD 外取一点 E ,连接 DE AE CE ,过点 D DE 的垂线交 AE 于点 P ,若 DE = DP = 1 PC = 6 .下列结论:① ΔAPD ΔCED ;② AE CE ;③点 C 到直线 DE 的距离为 3 ;④ S 正方形 ABCD = 5 + 2 2 ,其中正确结论的序号为   

来源:2021年湖南省张家界市中考数学试卷
  • 更新:2021-08-21
  • 题型:未知
  • 难度:未知

如图,在 Rt Δ ABC 中, ACB = 90 ° A = 60 ° ,点 D AB 的中点,连接 CD ,将线段 CD 绕点 D 顺时针旋转 α ( 60 ° < α < 120 ° ) 得到线段 ED ,且 ED 交线段 BC 于点 G CDE 的平分线 DM BC 于点 H

(1)如图1,若 α = 90 ° ,则线段 ED BD 的数量关系是    GD CD =   

(2)如图2,在(1)的条件下,过点 C CF / / DE DM 于点 F ,连接 EF BE

①试判断四边形 CDEF 的形状,并说明理由;

②求证: BE FH = 3 3

(3)如图3,若 AC = 2 tan ( α - 60 ° ) = m ,过点 C CF / / DE DM 于点 F ,连接 EF BE ,请直接写出 BE FH 的值(用含 m 的式子表示).

来源:2021年湖南省岳阳市中考数学试卷
  • 更新:2021-08-21
  • 题型:未知
  • 难度:未知

如图①, E F 是等腰 Rt Δ ABC 的斜边 BC 上的两动点, EAF = 45 ° CD BC CD = BE

(1)求证: ΔABE ΔACD

(2)求证: E F 2 = B E 2 + C F 2

(3)如图②,作 AH BC ,垂足为 H ,设 EAH = α FAH = β ,不妨设 AB = 2 ,请利用(2)的结论证明:当 α + β = 45 ° 时, tan ( α + β ) = tan α + tan β 1 - tan α tan β 成立.

来源:2021年湖南省娄底市中考数学试卷
  • 更新:2021-08-21
  • 题型:未知
  • 难度:未知

如图,在矩形 ABCD 中, E 是边 AB 上一点, BE = BC EF CD ,垂足为 F .将四边形 CBEF 绕点 C 顺时针旋转 α ( 0 ° < α < 90 ° ) ,得到四边形 C B ' E ' F ' B ' E ' 所在的直线分别交直线 BC 于点 G ,交直线 AD 于点 P ,交 CD 于点 K E ' F ' 所在的直线分别交直线 BC 于点 H ,交直线 AD 于点 Q ,连接 B ' F ' CD 于点 O

(1)如图1,求证:四边形 BEFC 是正方形;

(2)如图2,当点 Q 和点 D 重合时.

①求证: GC = DC

②若 OK = 1 CO = 2 ,求线段 GP 的长;

(3)如图3,若 BM / / F ' B ' GP 于点 M tan G = 1 2 ,求 S ΔGMB S CF ' H 的值.

来源:2021年湖北省宜昌市中考数学试卷
  • 更新:2021-08-01
  • 题型:未知
  • 难度:未知

ΔABC 中, ACB = 90 ° AC BC = m D 是边 BC 上一点,将 ΔABD 沿 AD 折叠得到 ΔAED ,连接 BE

(1)特例发现

如图1,当 m = 1 AE 落在直线 AC 上时.

①求证: DAC = EBC

②填空: CD CE 的值为   

(2)类比探究

如图2,当 m 1 AE 与边 BC 相交时,在 AD 上取一点 G ,使 ACG = BCE CG AE 于点 H .探究 CG CE 的值(用含 m 的式子表示),并写出探究过程;

(3)拓展运用

在(2)的条件下,当 m = 2 2 D BC 的中点时,若 EB EH = 6 ,求 CG 的长.

来源:2021年湖北省襄阳市中考数学试卷
  • 更新:2021-08-01
  • 题型:未知
  • 难度:未知

问题提出

如图(1),在 ΔA BC ΔDEC 中, ACB = DCE = 90 ° BC = AC EC = DC ,点 E ΔABC 内部,直线 AD BE 于点 F .线段 AF BF CF 之间存在怎样的数量关系?

问题探究

(1)先将问题特殊化如图(2),当点 D F 重合时,直接写出一个等式,表示 AF BF CF 之间的数量关系;

(2)再探究一般情形如图(1),当点 D F 不重合时,证明(1)中的结论仍然成立.

问题拓展

如图(3),在 ΔABC ΔDEC 中, ACB = DCE = 90 ° BC = kAC EC = kDC ( k 是常数),点 E ΔABC 内部,直线 AD BE 交于点 F .直接写出一个等式,表示线段 AF BF CF 之间的数量关系.

来源:2021年湖北省武汉市中考数学试卷
  • 更新:2021-08-01
  • 题型:未知
  • 难度:未知

等面积法是一种常用的、重要的数学解题方法.它是利用“同一个图形的面积相等”、“分割图形后各部分的面积之和等于原图形的面积”、“同底等高或等底同高的两个三角形面积相等”等性质解决有关数学问题,在解题中,灵活运用等面积法解决相关问题,可以使解题思路清晰,解题过程简便快捷.

(1)在直角三角形中,两直角边长分别为3和4,则该直角三角形斜边上的高的长为   ,其内切圆的半径长为   

(2)①如图1, P 是边长为 a 的正 ΔABC 内任意一点,点 O ΔABC 的中心,设点 P ΔABC 各边距离分别为 h 1 h 2 h 3 ,连接 AP BP CP ,由等面积法,易知 1 2 a ( h 1 + h 2 + h 3 ) = S ΔABC = 3 S ΔOAB ,可得 h 1 + h 2 + h 3 =   ;(结果用含 a 的式子表示)

②如图2, P 是边长为 a 的正五边形 ABCDE 内任意一点,设点 P 到五边形 ABCDE 各边距离分别为 h 1 h 2 h 3 h 4 h 5 ,参照①的探索过程,试用含 a 的式子表示 h 1 + h 2 + h 3 + h 4 + h 5 的值.(参考数据: tan 36 ° 8 11 tan 54 ° 11 8 )

(3)①如图3,已知 O 的半径为2,点 A O 外一点, OA = 4 AB O 于点 B ,弦 BC / / OA ,连接 AC ,则图中阴影部分的面积为   ;(结果保留 π )

②如图4,现有六边形花坛 ABCDEF ,由于修路等原因需将花坛进行改造,若要将花坛形状改造成五边形 ABCDG ,其中点 G AF 的延长线上,且要保证改造前后花坛的面积不变,试确定点 G 的位置,并说明理由.

来源:2021年湖北省随州市中考数学试卷
  • 更新:2021-08-01
  • 题型:未知
  • 难度:未知

如图,在 Rt Δ ABC 中, ACB = 90 ° O AB 的中点, OD 平分 AOC AC 于点 G OD = OA BD 分别与 AC OC 交于点 E F ,连接 AD CD ,则 OG BC 的值为   ;若 CE = CF ,则 CF OF 的值为   

来源:2021年湖北省随州市中考数学试卷
  • 更新:2021-08-01
  • 题型:未知
  • 难度:未知

已知等边三角形 ABC ,过 A 点作 AC 的垂线 l ,点 P l 上一动点(不与点 A 重合),连接 CP ,把线段 CP 绕点 C 逆时针方向旋转 60 ° 得到 CQ ,连 QB

(1)如图1,直接写出线段 AP BQ 的数量关系;

(2)如图2,当点 P B AC 同侧且 AP = AC 时,求证:直线 PB 垂直平分线段 CQ

(3)如图3,若等边三角形 ABC 的边长为4,点 P B 分别位于直线 AC 异侧,且 ΔAPQ 的面积等于 3 4 ,求线段 AP 的长度.

来源:2021年湖北省十堰市中考数学试卷
  • 更新:2021-08-01
  • 题型:未知
  • 难度:未知

如图,在 Rt Δ ABC 中, ACB = 90 ° AC = 8 BC = 6 ,点 P 是平面内一个动点,且 AP = 3 Q BP 的中点,在 P 点运动过程中,设线段 CQ 的长度为 m ,则 m 的取值范围是   

来源:2021年湖北省十堰市中考数学试卷
  • 更新:2021-08-01
  • 题型:未知
  • 难度:未知

如图,在正方形 ABCD 中,点 E F 分别在边 BC CD 上,且 EAF = 45 ° AE BD M 点, AF BD N 点.

(1)若正方形的边长为2,则 ΔCEF 的周长是   

(2)下列结论:① B M 2 + D N 2 = M N 2 ;②若 F CD 的中点,则 tan AEF = 2 ;③连接 MF ,则 ΔAMF 为等腰直角三角形.其中正确结论的序号是   (把你认为所有正确的都填上).

来源:2021年湖北省黄石市中考数学试卷
  • 更新:2021-08-01
  • 题型:未知
  • 难度:未知

如图,正方形 ABCD 中, AB = 1 ,连接 AC ACD 的平分线交 AD 于点 E ,在 AB 上截取 AF = DE ,连接 DF ,分别交 CE CA 于点 G H ,点 P 是线段 GC 上的动点, PQ AC 于点 Q ,连接 PH .下列结论:① CE DF ;② DE + DC = AC ;③ EA = 3 AH ;④ PH + PQ 的最小值是 2 2 ,其中正确结论的序号是   

来源:2021年湖北省黄冈市中考数学试卷
  • 更新:2021-08-01
  • 题型:未知
  • 难度:未知

如图,四边形 ABDC 中, AC = BC ACB = 90 ° AD BD 于点 D .若 BD = 2 CD = 4 2 ,则线段 AB 的长为   

来源:2021年湖北省鄂州市中考数学试卷
  • 更新:2021-08-01
  • 题型:未知
  • 难度:未知

如图,在 ΔABC 中, AB = AC ,以 AB 为直径的 O BC 相交于点 D DE AC ,垂足为 E

(1)求证: DE O 的切线;

(2)若弦 MN 垂直于 AB ,垂足为 G AG AB = 1 4 MN = 3 ,求 O 的半径;

(3)在(2)的条件下,当 BAC = 36 ° 时,求线段 CE 的长.

来源:2021年黑龙江省绥化市中考数学试卷
  • 更新:2021-08-01
  • 题型:未知
  • 难度:未知

初中数学三角形试题