如图,已知抛物线y=﹣x2+bx+c经过A(3,0),B(0,3)两点.
(1)求此抛物线的解析式和直线AB的解析式;
(2)如图①,动点E从O点出发,沿着OA方向以1个单位/秒的速度向终点A匀速运动,同时,动点F从A点出发,沿着AB方向以 个单位/秒的速度向终点B匀速运动,当E,F中任意一点到达终点时另一点也随之停止运动,连接EF,设运动时间为t秒,当t为何值时,△AEF为直角三角形?
(3)如图②,取一根橡皮筋,两端点分别固定在A,B处,用铅笔拉着这根橡皮筋使笔尖P在直线AB上方的抛物线上移动,动点P与A,B两点构成无数个三角形,在这些三角形中是否存在一个面积最大的三角形?如果存在,求出最大面积,并指出此时点P的坐标;如果不存在,请简要说明理由.
如图1,二次函数y=﹣x2+bx+c的图象过点A(3,0),B(0,4)两点,动点P从A出发,在线段AB上沿A→B的方向以每秒2个单位长度的速度运动,过点P作PD⊥y于点D,交抛物线于点C.设运动时间为t(秒).
(1)求二次函数y=﹣x2+bx+c的表达式;
(2)连接BC,当 时,求△BCP的面积;
(3)如图2,动点P从A出发时,动点Q同时从O出发,在线段OA上沿O→A的方向以1个单位长度的速度运动.当点P与B重合时,P、Q两点同时停止运动,连接DQ,PQ,将△DPQ沿直线PC折叠得到△DPE.在运动过程中,设△DPE和△OAB重合部分的面积为S,直接写出S与t的函数关系及t的取值范围.
已知直线y=2x+m与抛物线y=ax2+ax+b有一个公共点M(1,0),且a<b.
(Ⅰ)求抛物线顶点Q的坐标(用含a的代数式表示);
(Ⅱ)说明直线与抛物线有两个交点;
(Ⅲ)直线与抛物线的另一个交点记为N.
(ⅰ)若 ,求线段MN长度的取值范围;
(ⅱ)求△QMN面积的最小值.
如图,抛物线 的顶点为,与轴的正半轴交于点.
(1)将抛物线上的点的横坐标和纵坐标都扩大到原来的2倍,求变换后得到的抛物线的解析式;
(2)将抛物线上的点变为,,变换后得到的抛物线记作,抛物线的顶点为,点在抛物线上,满足,且.
①当时,求的值;
②当时,请直接写出的值,不必说明理由.
如图,抛物线 的顶点为,与轴的正半轴交于点.
(1)将抛物线上的点的横坐标和纵坐标都扩大到原来的2倍,求变换后得到的抛物线的解析式;
(2)将抛物线上的点变为,,变换后得到的抛物线记作,抛物线的顶点为,点在抛物线上,满足,且.
①当时,求的值;
②当时,请直接写出的值,不必说明理由.
如图1,已知抛物线 与轴交于点,过点的直线与抛物线交于另一点,点,到直线的距离相等.
(1)求直线的表达式;
(2)将直线向下平移 个单位,平移后的直线与抛物线交于点,(如图,判断直线是否平分线段,并说明理由;
(3)已知抛物线,,为常数)和直线有两个交点,,对于任意满足条件的,线段都能被直线平分,请直接写出与,之间的数量关系.
已知抛物线 与轴交于点,与轴的两个交点分别为,.
(1)求抛物线的解析式;
(2)已知点在抛物线上,连接,,若是以为直角边的直角三角形,求点的坐标;
(3)已知点在轴上,点在抛物线上,是否存在以,,,为顶点的四边形是平行四边形?若存在,请直接写出点的坐标;若不存在,请说明理由.
已知,抛物线经过原点,顶点为,.
(1)当,时,求抛物线的解析式;
(2)若抛物线也经过点,求与之间的关系式;
(3)当点在抛物线上,且时,求的取值范围.
如图,抛物线 经过点 , ,交 轴于点 ;
(1)求抛物线的解析式(用一般式表示);
(2)点 为 轴右侧抛物线上一点,是否存在点 使 ?若存在请直接给出点 坐标;若不存在请说明理由;
(3)将直线 绕点 顺时针旋转 ,与抛物线交于另一点 ,求 的长.
如图,抛物线y=ax2+bx﹣4(a≠0)与x轴交于A(4,0)、B(﹣1,0)两点,过点A的直线y=﹣x+4交抛物线于点C.
(1)求此抛物线的解析式;
(2)在直线AC上有一动点E,当点E在某个位置时,使△BDE的周长最小,求此时E点坐标;
(3)当动点E在直线AC与抛物线围成的封闭线A→C→B→D→A上运动时,是否存在使△BDE为直角三角形的情况,若存在,请直接写出符合要求的E点的坐标;若不存在,请说明理由.
如图1,在平面直径坐标系中,抛物线y=ax2+bx﹣2与x轴交于点A(﹣3,0).B(1,0),与y轴交于点C
(1)直接写出抛物线的函数解析式;
(2)以OC为半径的⊙O与y轴的正半轴交于点E,若弦CD过AB的中点M,试求出DC的长;
(3)将抛物线向上平移个单位长度(如图2)若动点P(x,y)在平移后的抛物线上,且点P在第三象限,请求出△PDE的面积关于x的函数关系式,并写出△PDE面积的最大值.
如图,已知抛物线经过原点O,顶点为A(1,1),且与直线y=x﹣2交于B,C两点.
(1)求抛物线的解析式及点C的坐标;
(2)求证:△ABC是直角三角形;
(3)若点N为x轴上的一个动点,过点N作MN⊥x轴与抛物线交于点M,则是否存在以O,M,N为顶点的三角形与△ABC相似?若存在,请求出点N的坐标;若不存在,请说明理由.
如图1,抛物线y=ax2+b的顶点坐标为(0,﹣1),且经过点A(﹣2,0).
(1)求抛物线的解析式;
(2)若将抛物线y=ax2+b中在x轴下方的图象沿x轴翻折到x轴上方,x轴上方的图象保持不变,就得到了函数y=|ax2+b|图象上的任意一点P,直线l是经过(0,1)且平行与x轴的直线,过点P作直线l的垂线,垂足为D,猜想并探究:PO与PD的差是否为定值?如果是,请求出此定值;如果不是,请说明理由.
(注:在解题过程中,如果你觉得有困难,可以阅读下面的材料)
附阅读材料:
1.在平面直角坐标系中,若A、B两点的坐标分别为A(x1,y1),B(x2,y2),则A,B两点间的距离为 ,这个公式叫两点间距离公式.
例如:已知A,B两点的坐标分别为(﹣1,2),(2,﹣2),则A,B两点间的距离为 .
2.因式分解:x4+2x2y2+y4=(x2+y2)2.
如图,矩形的边OA在x轴上,边OC在y轴上,点B的坐标为(10,8),沿直线OD折叠矩形,使点A正好落在BC上的E处,E点坐标为(6,8),抛物线y=ax2+bx+c经过O、A、E三点.
(1)求此抛物线的解析式;
(2)求AD的长;
(3)点P是抛物线对称轴上的一动点,当△PAD的周长最小时,求点P的坐标.