初中数学

在平面直角坐标系 xOy 中,规定:抛物线 y = a ( x - h ) 2 + k 的伴随直线为 y = a ( x - h ) + k .例如:抛物线 y = 2 ( x + 1 ) 2 - 3 的伴随直线为 y = 2 ( x + 1 ) - 3 ,即 y = 2 x - 1

(1)在上面规定下,抛物线 y = ( x + 1 ) 2 - 4 的顶点坐标为              ,伴随直线为                  ,抛物线 y = ( x + 1 ) 2 - 4 与其伴随直线的交点坐标为                      

(2)如图,顶点在第一象限的抛物线 y = m ( x - 1 ) 2 - 4 m 与其伴随直线相交于点 A B (点 A 在点 B 的左侧),与 x 轴交于点 C D

①若 CAB = 90 ° ,求 m 的值;

②如果点 P ( x , y ) 是直线 BC 上方抛物线上的一个动点, ΔPBC 的面积记为 S ,当 S 取得最大值 27 4 时,求 m 的值.

来源:2017年湖北省孝感市中考数学试卷
  • 更新:2021-05-22
  • 题型:未知
  • 难度:未知

如图,矩形 OABC 的两边在坐标轴上,点 A 的坐标为 ( 10 , 0 ) ,抛物线 y = a x 2 + bx + 4 过点 B C 两点,且与 x 轴的一个交点为 D ( - 2 , 0 ) ,点 P 是线段 CB 上的动点,设 CP = t ( 0 < t < 10 )

(1)请直接写出 B C 两点的坐标及抛物线的解析式;

(2)过点 P PE BC ,交抛物线于点 E ,连接 BE ,当 t 为何值时, PBE = OCD

(3)点 Q x 轴上的动点,过点 P PM / / BQ ,交 CQ 于点 M ,作 PN / / CQ ,交 BQ 于点 N ,当四边形 PMQN 为正方形时,请求出 t 的值.

来源:2017年湖北省襄阳市中考数学试卷
  • 更新:2021-05-22
  • 题型:未知
  • 难度:未知

如图,抛物线 y = 1 2 x 2 + bx + c x 轴交于 A B 两点,与 y 轴交于点 C ,其对称轴交抛物线于点 D ,交 x 轴于点 E ,已知 OB = OC = 6

(1)求抛物线的解析式及点 D 的坐标;

(2)连接 BD F 为抛物线上一动点,当 FAB = EDB 时,求点 F 的坐标;

(3)平行于 x 轴的直线交抛物线于 M N 两点,以线段 MN 为对角线作菱形 MPNQ ,当点 P x 轴上,且 PQ = 1 2 MN 时,求菱形对角线 MN 的长.

来源:2017年湖北省咸宁市中考数学试卷
  • 更新:2021-05-22
  • 题型:未知
  • 难度:未知

已知点 A ( - 1 , 1 ) B ( 4 , 6 ) 在抛物线 y = a x 2 + bx 上,

(1)求抛物线的解析式;

(2)如图1,点 F 的坐标为 ( 0 m ) ( m > 2 ) ,直线 AF 交抛物线于另一点 G ,过点 G x 轴的垂线,垂足为 H .设抛物线与 x 轴的正半轴交于点 E ,连接 FH AE ,求证: FH / / AE

(3)如图2,直线 AB 分别交 x 轴、 y 轴于 C D 两点.点 P 从点 C 出发,沿射线 CD 方向匀速运动,速度为每秒 2 个单位长度;同时点 Q 从原点 O 出发,沿 x 轴正方向匀速运动,速度为每秒1个单位长度.点 M 是直线 PQ 与抛物线的一个交点,当运动到 t 秒时, QM = 2 PM ,直接写出 t 的值.

来源:2017年湖北省武汉市中考数学试卷
  • 更新:2021-05-21
  • 题型:未知
  • 难度:未知

抛物线 y = x 2 + bx + c x 轴交于 A ( 1 , 0 ) B ( m , 0 ) ,与 y 轴交于 C

(1)若 m = - 3 ,求抛物线的解析式,并写出抛物线的对称轴;

(2)如图1,在(1)的条件下,设抛物线的对称轴交 x 轴于 D ,在对称轴左侧的抛物线上有一点 E ,使 S ΔACE = 10 3 S ΔACD ,求点 E 的坐标;

(3)如图2,设 F ( - 1 , - 4 ) FG y 轴于 G ,在线段 OG 上是否存在点 P ,使 OBP = FPG ?若存在,求 m 的取值范围;若不存在,请说明理由.

来源:2017年湖北省十堰市中考数学试卷
  • 更新:2021-05-21
  • 题型:未知
  • 难度:未知

如图,已知抛物线 y = a x 2 + c 过点 ( - 2 , 2 ) ( 4 , 5 ) ,过定点 F ( 0 , 2 ) 的直线 l : y = kx + 2 与抛物线交于 A B 两点,点 B 在点 A 的右侧,过点 B x 轴的垂线,垂足为 C

(1)求抛物线的解析式;

(2)当点 B 在抛物线上运动时,判断线段 BF BC 的数量关系 ( > < = ) ,并证明你的判断;

(3) P y 轴上一点,以 B C F P 为顶点的四边形是菱形,设点 P ( 0 , m ) ,求自然数 m 的值;

(4)若 k = 1 ,在直线 l 下方的抛物线上是否存在点 Q ,使得 ΔQBF 的面积最大?若存在,求出点 Q 的坐标及 ΔQBF 的最大面积;若不存在,请说明理由.

来源:2017年湖北省恩施州中考数学试卷
  • 更新:2021-05-21
  • 题型:未知
  • 难度:未知

已知二次函数 y = a x 2 + bx - 4 ( a > 0 ) 的图象与 x 轴交于 A B 两点, ( A B 左侧,且 OA < OB ) ,与 y 轴交于点 C

(1)求 C 点坐标,并判断 b 的正负性;

(2)设这个二次函数的图象的对称轴与直线 AC 相交于点 D ,已知 DC : CA = 1 : 2 ,直线 BD y 轴交于点 E ,连接 BC

①若 ΔBCE 的面积为8,求二次函数的解析式;

②若 ΔBCD 为锐角三角形,请直接写出 OA 的取值范围.

来源:2019年江苏省无锡市中考数学试卷
  • 更新:2021-05-21
  • 题型:未知
  • 难度:未知

已知二次函数 y = a x 2 - 4 ax + c ( a < 0 ) 的图象与它的对称轴相交于点 A ,与 y 轴相交于点 C ( 0 , - 2 ) ,其对称轴与 x 轴相交于点 B

(1)若直线 BC 与二次函数的图象的另一个交点 D 在第一象限内,且 BD = 2 ,求这个二次函数的表达式;

(2)已知 P y 轴上,且 ΔPOA 为等腰三角形,若符合条件的点 P 恰好有2个,试直接写出 a 的值.

来源:2019年江苏省无锡市中考数学试卷(副卷)
  • 更新:2021-05-21
  • 题型:未知
  • 难度:未知

如图,在平面直角坐标系 xOy 中,二次函数图象的顶点坐标为 ( 4 , - 3 ) ,该图象与 x 轴相交于点 A B ,与 y 轴相交于点 C ,其中点 A 的横坐标为1.

(1)求该二次函数的表达式;

(2)求 tan ABC

来源:2019年江苏省泰州市中考数学试卷
  • 更新:2021-05-21
  • 题型:未知
  • 难度:未知

如图,抛物线 y = x 2 + bx + c x 轴于 A B 两点,其中点 A 坐标为 ( 1 , 0 ) ,与 y 轴交于点 C ( 0 , - 3 )

(1)求抛物线的函数表达式;

(2)如图①,连接 AC ,点 P 在抛物线上,且满足 PAB = 2 ACO .求点 P 的坐标;

(3)如图②,点 Q x 轴下方抛物线上任意一点,点 D 是抛物线对称轴与 x 轴的交点,直线 AQ BQ 分别交抛物线的对称轴于点 M N .请问 DM + DN 是否为定值?如果是,请求出这个定值;如果不是,请说明理由.

来源:2019年江苏省宿迁市中考数学试卷
  • 更新:2021-05-21
  • 题型:未知
  • 难度:未知

如图①,抛物线 y = - x 2 + ( a + 1 ) x - a x 轴交于 A B 两点(点 A 位于点 B 的左侧),与 y 轴交于点 C .已知 ΔABC 的面积是6.

(1)求 a 的值;

(2)求 ΔABC 外接圆圆心的坐标;

(3)如图②, P 是抛物线上一点, Q 为射线 CA 上一点,且 P Q 两点均在第三象限内, Q A 是位于直线 BP 同侧的不同两点,若点 P x 轴的距离为 d ΔQPB 的面积为 2 d ,且 PAQ = AQB ,求点 Q 的坐标.

来源:2019年江苏省苏州市中考数学试卷
  • 更新:2021-05-21
  • 题型:未知
  • 难度:未知

如图,在平面直角坐标系 xOy 中,抛物线 L 1 : y = x 2 + bx + c 过点 C ( 0 , - 3 ) ,与抛物线 L 2 : y = - 1 2 x 2 - 3 2 x + 2 的一个交点为 A ,且点 A 的横坐标为2,点 P Q 分别是抛物线 L 1 L 2 上的动点.

(1)求抛物线 L 1 对应的函数表达式;

(2)若以点 A C P Q 为顶点的四边形恰为平行四边形,求出点 P 的坐标;

(3)设点 R 为抛物线 L 1 上另一个动点,且 CA 平分 PCR .若 OQ / / PR ,求出点 Q 的坐标.

来源:2019年江苏省连云港市中考数学试卷
  • 更新:2021-05-21
  • 题型:未知
  • 难度:未知

如图,在平面直角坐标系中,抛物线 y = a x 2 + bx + c 经过 A ( - 1 , 0 ) B ( 4 , 0 ) C ( 0 , 4 ) 三点.

(1)求抛物线的解析式及顶点 D 的坐标;

(2)将(1)中的抛物线向下平移 15 4 个单位长度,再向左平移 h ( h > 0 ) 个单位长度,得到新抛物线.若新抛物线的顶点 D ' ΔABC 内,求 h 的取值范围;

(3)点 P 为线段 BC 上一动点(点 P 不与点 B C 重合),过点 P x 轴的垂线交(1)中的抛物线于点 Q ,当 ΔPQC ΔABC 相似时,求 ΔPQC 的面积.

来源:2019年新疆生产建设兵团中考数学试卷
  • 更新:2021-05-21
  • 题型:未知
  • 难度:未知

在平面直角坐标系 xOy 中,抛物线 y = - 1 4 x 2 + bx + c 经过点 A ( - 2 , 0 ) B ( 8 , 0 )

(1)求抛物线的解析式;

(2)点 C 是抛物线与 y 轴的交点,连接 BC ,设点 P 是抛物线上在第一象限内的点, PD BC ,垂足为点 D

①是否存在点 P ,使线段 PD 的长度最大?若存在,请求出点 P 的坐标;若不存在,请说明理由;

②当 ΔPDC ΔCOA 相似时,求点 P 的坐标.

来源:2018年新疆乌鲁木齐市中考数学试卷
  • 更新:2021-05-21
  • 题型:未知
  • 难度:未知

如图,抛物线 y = a x 2 + bx + c ( a 0 ) 与直线 y = x + 1 相交于 A ( - 1 , 0 ) B ( 4 , m ) 两点,且抛物线经过点 C ( 5 , 0 )

(1)求抛物线的解析式;

(2)点 P 是抛物线上的一个动点(不与点 A 、点 B 重合),过点 P 作直线 PD x 轴于点 D ,交直线 AB 于点 E

①当 PE = 2 ED 时,求 P 点坐标;

②是否存在点 P 使 ΔBEC 为等腰三角形?若存在请直接写出点 P 的坐标;若不存在,请说明理由.

来源:2017年新疆乌鲁木齐市中考数学试卷
  • 更新:2021-05-20
  • 题型:未知
  • 难度:未知

初中数学待定系数法求二次函数解析式计算题