如图,一次函数的图象与反比例函数的图象交于点P,点P在第一象限.PA⊥x轴于点A,PB⊥y轴于点B.一次函数的图象分别交轴、轴于点C、D,且S△PBD=4,.
(1)求点D的坐标;
(2)求一次函数与反比例函数的解析式;
(3)根据图象写出当时,一次函数的值大于反比例函数的值的的取值范围.
如图,在平面直角坐标系中,坐标原点 是菱形 的对称中心.边 与 轴平行,点 ,反比例函数 的图象经过 , 两点.
(1)求点 的坐标及反比例函数的解析式.
(2)直线 与反比例函数图象的另一交点为 ,求以 , , 为顶点的三角形的面积.
如图:一次函数的图象与反比例函数的图象交于A(-2,6)和点B(4,n)
(1)求反比例函数的解析式和B点坐标
(2)根据图象直接回答,在什么范围时,一次函数的值大于反比例函数的值.
如图,已知反比例函数 的图象与一次函数 的图象在第一象限交于 , 两点
(1)求反比例函数和一次函数的表达式;
(2)已知点 , ,过点 作平行于 轴的直线,在第一象限内交一次函数 的图象于点 ,交反比例函数 上的图象于点 .若 ,结合函数图象直接写出 的取值范围.
如图,一次函数(为常数,且)的图像与反比例函数的图像交于,两点.
(1)求一次函数的表达式;
(2)若将直线向下平移个单位长度后与反比例函数的图像有且只有一个公共点,求的值.
如图,一次函数 的图象与反比例函数 的图象交于点 、 ,与 轴交于点 ,若 ,且 .
(1)求反比例函数与一次函数的表达式;
(2)请直接写出不等式 的解集.
(年贵州省贵阳市)如图,一次函数的图象与反比例函数的图象相交于A(2,1),B两点.
(1)求出反比例函数与一次函数的表达式;
(2)请直接写出B点的坐标,并指出使反比例函数值大于一次函数值的x的取值范围.
如图,在平面直角坐标系中,一次函数 的图象与反比例函数 的图象交于点 和 .
(1)求一次函数和反比例函数的表达式;
(2)请直接写出 时, 的取值范围;
(3)过点 作 轴, 于点 ,点 是直线 上一点,若 ,求点 的坐标.
探究函数性质时,我们经历了列表、描点、连线画函数图象,观察分析图象特征,概括函数性质的过程.以下是我们研究函数 性质及其应用的部分过程,请按要求完成下列各小题.
|
|
|
|
0 |
1 |
2 |
3 |
4 |
5 |
|
|
|
6 |
5 |
4 |
|
2 |
1 |
|
7 |
|
(1)写出函数关系式中 及表格中 , 的值:
, , ;
(2)根据表格中的数据在所给的平面直角坐标系中画出该函数的图象,并根据图象写出该函数的一条性质: ;
(3)已知函数 的图象如图所示,结合你所画的函数图象,直接写出不等式 的解集.
如图,一次函数 与反比例函数 的图象交于点 , .
(1)求反比例函数和一次函数的解析式;
(2)判断点 是否在一次函数 的图象上,并说明理由;
(3)写出不等式 的解集.
如图,一次函数 与反比例函数 的图象交于
点 和 ,与 轴交于点 .
(1)求一次函数和反比例函数的解析式;
(2)在 轴上取一点 ,当 的面积为3时,求点 的坐标;
(3)将直线 向下平移2个单位后得到直线 ,当函数值 时,求 的取值范围.
如图,正比例函数 与反比例函数 的图象交于点 ,过点 作 轴于点 , ,点 在线段 上,且 .
(1)求 的值及线段 的长;
(2)点 为 点上方 轴上一点,当 与 的面积相等时,请求出点 的坐标.
如图,反比例函数 的图象与正比例函数 的图象相交于 , 两点,点 在第四象限, 轴, .
(1)求 的值及点 的坐标;
(2)求 的值.
如图,在平面直角坐标系中,已知点 的坐标为 ,点 的坐标为 ,连结 ,以 为边在第一象限内作正方形 ,直线 交双曲线 于 、 两点,连结 ,交 轴于点 .
(1)求双曲线 和直线 的解析式.(2)求 的面积.