如图,在平面直角坐标系中,一次函数的图象与反比例函数的图象交于第一、三象限内的、两点,与轴交于点,过点作轴,垂足为,,,点的纵坐标为4.
(1)求该反比例函数和一次函数的解析式;
(2)连接,求四边形的面积.
如图,点 在双曲线 上,过点 作 轴于点 ,点 在线段 上且 ,双曲线 经过点 ,则 .
在平面直角坐标系中,对于不在坐标轴上的任意一点 ,我们把点 , 称为点 的"倒数点".如图,矩形 的顶点 为 ,顶点 在 轴上,函数 的图象与 交于点 .若点 是点 的"倒数点",且点 在矩形 的一边上,则 的面积为 .
已知三个点 , , , , , 在反比例函数 的图象上,其中 ,下列结论中正确的是
A. |
|
B. |
|
C. |
|
D. |
|
已知反比例函数 的图象经过点 .
(1)求该反比例函数的表达式;
(2)如图,在反比例函数 的图象上点 的右侧取点 ,过点 作 轴的垂线交 轴于点 ,过点 作 轴的垂线交直线 于点 .
①过点 ,点 分别作 轴, 轴的垂线,两线相交于点 ,求证: , , 三点共线;
②若 ,求证: .
如图,在平面直角坐标系中,一次函数 的图象与 轴相交于点 ,与反比例函数 在第一象限内的图象相交于点 ,过点 作 轴于点 .
(1)求反比例函数的解析式;
(2)求 的面积.
如图,在平面直角坐标系中,矩形 的对角线 的中点与坐标原点重合,点 是 轴上一点,连接 .若 平分 ,反比例函数 的图象经过 上的两点 , ,且 , 的面积为18,则 的值为
A.6B.12C.18D.24
探究函数 与 的相关性质.
(1)小聪同学对函数 进行了如下列表、描点,请你帮他完成连线的步骤;观察图象可得它的最小值为 ,它的另一条性质为 ;
|
|
|
|
|
1 |
|
2 |
|
3 |
|
|
|
|
|
|
2 |
|
|
|
|
|
(2)请用配方法求函数 的最小值;
(3)猜想函数 的最小值为 .
如图,在平面直角坐标系中,等边 和菱形 的边 , 都在 轴上,点 在 边上, ,反比例函数 的图象经过点 ,则 的值为 .