如图,已知反比例函数 与正比例函数 的图象交于 , 两点.
(1)求该反比例函数的表达式;
(2)若点 在 轴上,且 的面积为3,求点 的坐标.
如图,在平面直角坐标系中,将坐标原点 沿 轴向左平移2个单位长度得到点 ,过点 作 轴的平行线交反比例函数 的图象于点 , .
(1)求反比例函数的解析式;
(2)若 , 、 , 是该反比例函数图象上的两点,且 时, ,指出点 、 各位于哪个象限?并简要说明理由.
如图,将一把矩形直尺 和一块等腰直角三角板 摆放在平面直角坐标系中, 在 轴上,点 与点 重合,点 在 上, 交 于点 ,反比例函数 的图象恰好经过点 , ,若直尺的宽 ,三角板的斜边 ,则 .
如图,在平面直角坐标系 中,函数 的图象与函数 的图象相交于点 ,并与 轴交于点 .点 是线段 上一点, 与 的面积比为 .
(1) , ;
(2)求点 的坐标;
(3)若将 绕点 逆时针旋转,得到△ ,其中点 落在 轴负半轴上,判断点 是否落在函数 的图象上,并说明理由.
已知点 , 都在反比例函数 的图象上,且 ,则下列结论一定正确的是
A. B. C. D.
小明根据学习函数的经验,对函数 的图象与性质进行了探究.
下面是小明的探究过程,请补充完整:
(1)函数 的自变量 的取值范围是 .
(2)下表列出了 与 的几组对应值,请写出 , 的值: , ;
|
|
|
|
|
|
|
|
|
1 |
2 |
3 |
4 |
|
|
|
|
|
|
|
|
|
|
2 |
|
|
|
|
(3)如图,在平面直角坐标系 中,描出了以上表中各对对应值为坐标的点,根据描出的点,画出该函数的图象;
(4)结合函数的图象,请完成:
①当 时, .
②写出该函数的一条性质 .
③若方程 有两个不相等的实数根,则 的取值范围是 .
如图,在 中, , 轴, 为坐标原点, 的坐标为 ,反比例函数 的图象的一支过 点,反比例函数 的图象的一支过 点,过 作 轴于 ,若 的面积为 .
(1)求 的值;
(2)求反比例函数 的解析式.
在平面直角坐标系中,对于不在坐标轴上的任意一点 ,我们把点 , 称为点 的"倒数点".如图,矩形 的顶点 为 ,顶点 在 轴上,函数 的图象与 交于点 .若点 是点 的"倒数点",且点 在矩形 的一边上,则 的面积为 .
已知三个点 , , , , , 在反比例函数 的图象上,其中 ,下列结论中正确的是
A. |
|
B. |
|
C. |
|
D. |
|
已知反比例函数 的图象经过点 .
(1)求该反比例函数的表达式;
(2)如图,在反比例函数 的图象上点 的右侧取点 ,过点 作 轴的垂线交 轴于点 ,过点 作 轴的垂线交直线 于点 .
①过点 ,点 分别作 轴, 轴的垂线,两线相交于点 ,求证: , , 三点共线;
②若 ,求证: .
如图,在平面直角坐标系中,一次函数 的图象与 轴相交于点 ,与反比例函数 在第一象限内的图象相交于点 ,过点 作 轴于点 .
(1)求反比例函数的解析式;
(2)求 的面积.
如图,在平面直角坐标系中,矩形 的对角线 的中点与坐标原点重合,点 是 轴上一点,连接 .若 平分 ,反比例函数 的图象经过 上的两点 , ,且 , 的面积为18,则 的值为
A.6B.12C.18D.24