初中数学

某玩具厂生产一种玩具,本着控制固定成本,降价促销的原则,使生产的玩具能够全部售出.据市场调查,若按每个玩具280元销售时,每月可销售300个.若销售单价每降低1元,每月可多售出2个.据统计,每个玩具的固定成本 Q (元)与月产销量 y (个)满足如下关系:

月产销量 y (个)

160

200

240

300

每个玩具的固定成本 Q (元)

60

48

40

32

(1)写出月产销量 y (个)与销售单价 x (元)之间的函数关系式;

(2)求每个玩具的固定成本 Q (元)与月产销量 y (个)之间的函数关系式;

(3)若每个玩具的固定成本为30元,则它占销售单价的几分之几?

(4)若该厂这种玩具的月产销量不超过400个,则每个玩具的固定成本至少为多少元?销售单价最低为多少元?

来源:2016年山东省青岛市中考数学试卷
  • 更新:2021-05-14
  • 题型:未知
  • 难度:未知

在一段长为1000的笔直道路AB上,甲、乙两名运动员均从A点出发进行往返跑训练.已知乙比甲先出发30秒钟,甲距A点的距离y(米)与其出发的时间x(分钟)的函数图象如图所示,乙的速度是150米/分钟,且当乙到达B点后立即按原速返回.

(1)当x为何值时,两人第一次相遇?

(2)当两人第二次相遇时,求甲的总路程.

来源:2019年湖南省永州市中考数学试卷
  • 更新:2021-01-01
  • 题型:未知
  • 难度:未知

小明从家步行到学校需走的路程为1800米.图中的折线 OAB 反映了小明从家步行到学校所走的路程 s (米 ) 与时间 t (分钟)的函数关系,根据图象提供的信息,当小明从家出发去学校步行15分钟时,到学校还需步行  米.

来源:2020年上海市中考数学试卷
  • 更新:2021-05-26
  • 题型:未知
  • 难度:未知

甲、乙施工队分别从两端修一段长度为380米的公路.在施工过程中,乙队曾因技术改进而停工一天,之后加快了施工进度并与甲队共同按期完成了修路任务.下表是根据每天工程进度绘制而成的.

施工时间 /

1

2

3

4

5

6

7

8

9

累计完成施工量 /

35

70

105

140

160

215

270

325

380

下列说法错误的是 (    )

A.

甲队每天修路20米

B.

乙队第一天修路15米

C.

乙队技术改进后每天修路35米

D.

前七天甲,乙两队修路长度相等

来源:2019年山东省威海市中考数学试卷
  • 更新:2021-01-01
  • 题型:未知
  • 难度:未知

星期天,李玉刚同学随爸爸妈妈回老家探望爷爷奶奶,爸爸 8 : 30 骑自行车先走,平均每小时骑行 20 km ;李玉刚同学和妈妈 9 : 30 乘公交车后行,公交车平均速度是 40 km / h .爸爸的骑行路线与李玉刚同学和妈妈的乘车路线相同,路程均为 40 km .设爸爸骑行时间为 x ( h )

(1)请分别写出爸爸的骑行路程 y 1 ( km ) 、李玉刚同学和妈妈的乘车路程 y 2 ( k m ) x ( h ) 之间的函数解析式,并注明自变量的取值范围;

(2)请在同一个平面直角坐标系中画出(1)中两个函数的图象;

(3)请回答谁先到达老家.

来源:2016年山东省滨州市中考数学试卷
  • 更新:2021-05-14
  • 题型:未知
  • 难度:未知

汛期到来,山洪暴发.下表记录了某水库内水位的变化情况,其中表示时间(单位:表示水位高度(单位:,当时,达到警戒水位,开始开闸放水.

0

2

4

6

8

10

12

14

16

18

20

14

15

16

17

18

14.4

12

10.3

9

8

7.2

(1)在给出的平面直角坐标系中,根据表格中的数据描出相应的点.

(2)请分别求出开闸放水前和放水后最符合表中数据的函数解析式.

(3)据估计,开闸放水后,水位的这种变化规律还会持续一段时间,预测何时水位达到

来源:2019年山东省临沂市中考数学试卷
  • 更新:2021-01-01
  • 题型:未知
  • 难度:未知

“和谐号”火车从车站出发,在行驶过程中速度 y (单位: m / s ) 与时间 x (单位: s ) 的关系如图所示,其中线段 BC / / x 轴.

请根据图象提供的信息解答下列问题:

(1)当 0 x 10 ,求 y 关于 x 的函数解析式;

(2)求 C 点的坐标.

来源:2017年湖北省宜昌市中考数学试卷
  • 更新:2021-05-22
  • 题型:未知
  • 难度:未知

甲无人机从地面起飞,乙无人机从距离地面 20 m 高的楼顶起飞,两架无人机同时匀速上升 10 s .甲、乙两架无人机所在的位置距离地面的高度 y (单位: m ) 与无人机上升的时间 x (单位: s ) 之间的关系如图所示.下列说法正确的是 (    )

A.

5 s 时,两架无人机都上升了 40 m

B.

10 s 时,两架无人机的高度差为 20 m

C.

乙无人机上升的速度为 8 m / s

D.

10 s 时,甲无人机距离地面的高度是 60 m

来源:2021年重庆市中考数学试卷(A卷)
  • 更新:2021-08-17
  • 题型:未知
  • 难度:未知

某通讯公司就手机流量套餐推出三种方案,如下表:


A 方案

B 方案

C 方案

每月基本费用(元     )

20

56

266

每月免费使用流量(兆     )

1024

m

无限

超出后每兆收费(元     )

n

n


A B C 三种方案每月所需的费用 y (元 ) 与每月使用的流量 x (兆 ) 之间的函数关系如图所示.

(1)请写出 m n 的值.

(2)在 A 方案中,当每月使用的流量不少于1024兆时,求每月所需的费用 y (元 ) 与每月使用的流量 x (兆 ) 之间的函数关系式.

(3)在这三种方案中,当每月使用的流量超过多少兆时,选择 C 方案最划算?

来源:2021年浙江省宁波市中考数学试卷
  • 更新:2021-08-18
  • 题型:未知
  • 难度:未知

某品牌鞋子的长度 ycm 与鞋子的"码"数 x 之间满足一次函数关系.若22码鞋子的长度为 16 cm ,44码鞋子的长度为 27 cm ,则38码鞋子的长度为 (    )

A.

23 cm

B.

24 cm

C.

25 cm

D.

26 cm

来源:2021年安徽省中考数学试卷
  • 更新:2021-08-18
  • 题型:未知
  • 难度:未知

下面图片是七年级教科书中“实际问题与一元一次方程”的探究3.

探究3

电话计费问题

下表中有两种移动电话计费方式.

月使用费 /

主叫限定时间 / min

主叫超时费 / (元 / min )

被叫

方式一

58

150

0.25

免费

方式二

88

350

0.19

免费

考虑下列问题:

月使用费固定收:

主叫不超限定时间不再收费,主叫超时部分加收超时费,被叫免费.

(1)设一个月内用移动电话主叫为 tmin ( t 是正整数).根据上表,列表说明:当 t 在不同时间范围内取值时,按方式一和方式二如何计费.

(2)观察你的列表,你能从中发现如何根据主叫时间选择省钱的计费方式吗?通过计算验证你的看法.

小明升入初三再看这个问题,发现两种计费方式,每一种都是因主叫时间的变化而引起计费的变化,他把主叫时间视为在正实数范围内变化,决定用函数来解决这个问题.

(1)根据函数的概念,小明首先将问题中的两个变量分别设为自变量 x 和自变量的函数 y ,请你帮小明写出:

x 表示问题中的    y 表示问题中的   

并写出计费方式一和二分别对应的函数解析式;

(2)在给出的正方形网格纸上画出(1)中两个函数的大致图象,并依据图象写出如何根据主叫时间选择省钱的计费方式.(注 : 坐标轴单位长度可根据需要自己确定)

来源:2021年内蒙古呼和浩特市中考数学试卷
  • 更新:2021-08-19
  • 题型:未知
  • 难度:未知

暑期将至,某健身俱乐部面向学生推出暑期优惠活动,活动方案如下.

方案一:购买一张学生暑期专享卡,每次健身费用按六折优惠;

方案二:不购买学生暑期专享卡,每次健身费用按八折优惠.

设某学生暑期健身 x (次 ) ,按照方案一所需费用为 y 1 (元 ) ,且 y 1 = k 1 x + b ;按照方案二所需费用为 y 2 (元 ) ,且 y 2 = k 2 x .其函数图象如图所示.

(1)求 k 1 b 的值,并说明它们的实际意义;

(2)求打折前的每次健身费用和 k 2 的值;

(3)八年级学生小华计划暑期前往该俱乐部健身8次,应选择哪种方案所需费用更少?说明理由.

来源:2020年河南省中考数学试卷
  • 更新:2021-05-26
  • 题型:未知
  • 难度:未知

为了美化环境,建设宜居成都,我市准备在一个广场上种植甲、乙两种花卉,经市场调查,甲种花卉的种植费用 y (元 ) 与种植面积 x ( m 2 ) 之间的函数关系如图所示,乙种花卉的种植费用为每平方米100元.

(1)直接写出当 0 x 300 x > 300 时, y x 的函数关系式;

(2)广场上甲、乙两种花卉的种植面积共 1200 m 2 ,若甲种花卉的种植面积不少于 200 m 2 ,且不超过乙种花卉种植面积的2倍,那么应该怎样分配甲、乙两种花卉的种植面积才能使种植总费用最少?最少总费用为多少元?

来源:2018年四川省成都市中考数学试卷
  • 更新:2021-05-23
  • 题型:未知
  • 难度:未知

甲、乙两人分别从 A B 两地同时出发,匀速相向而行.甲的速度大于乙的速度,甲到达 B 地后,乙继续前行.设出发 xℎ 后,两人相距 ykm ,图中折线表示从两人出发至乙到达 A 地的过程中 y x 之间的函数关系.

根据图中信息,求:

(1)点 Q 的坐标,并说明它的实际意义;

(2)甲、乙两人的速度.

来源:2018年山东省临沂市中考数学试卷
  • 更新:2021-05-17
  • 题型:未知
  • 难度:未知

荔枝是深圳的特色水果,小明的妈妈先购买了2千克桂味和3千克糯米糍,共花费90元;后又购买了1千克桂味和2千克糯米糍,共花费55元.(每次两种荔枝的售价都不变)

(1)求桂味和糯米糍的售价分别是每千克多少元;

(2)如果还需购买两种荔枝共12千克,要求糯米糍的数量不少于桂味数量的2倍,请设计一种购买方案,使所需总费用最低.

来源:2016年广东省深圳市中考数学试卷
  • 更新:2021-02-24
  • 题型:未知
  • 难度:未知

初中数学一次函数的应用试题