初中数学

A B 两地相距 240 km ,甲货车从 A 地以 40 km / h 的速度匀速前往 B 地,到达 B 地后停止.在甲出发的同时,乙货车从 B 地沿同一公路匀速前往 A 地,到达 A 地后停止.两车之间的路程 y ( km ) 与甲货车出发时间 x ( h ) 之间的函数关系如图中的折线 CD - DE - EF 所示.其中点 C 的坐标是 ( 0 , 240 ) ,点 D 的坐标是 ( 2 . 4 , 0 ) ,则点 E 的坐标是  

来源:2020年重庆市中考数学试卷(a卷)
  • 更新:2021-05-26
  • 题型:未知
  • 难度:未知

一个容器有进水管和出水管,每分钟的进水量和出水量是两个常数.从某时刻开始 4 min 内只进水不出水,从第 4 min 到第 24 min 内既进水又出水,从第 24 min 开始只出水不进水,容器内水量 y (单位: L ) 与时间 x (单位: min ) 之间的关系如图所示,则图中 a 的值是 (    )

A.

32

B.

34

C.

36

D.

38

来源:2020年湖北省武汉市中考数学试卷
  • 更新:2020-12-31
  • 题型:未知
  • 难度:未知

如图,在平面直角坐标系中, ΔAOB 的顶点 O 为坐标原点,点 A 的坐标为 ( 4 , 0 ) ,点 B 的坐标为 ( 0 , 1 ) ,点 C 为边 AB 的中点,正方形 OBDE 的顶点 E x 轴的正半轴上,连接 CO CD CE

(1)线段 OC 的长为  

(2)求证: ΔCBD ΔCOE

(3)将正方形 OBDE 沿 x 轴正方向平移得到正方形 O 1 B 1 D 1 E 1 ,其中点 O B D E 的对应点分别为点 O 1 B 1 D 1 E 1 ,连接 C D 1 C E 1 ,设点 E 1 的坐标为 ( a , 0 ) ,其中 a 2 ,△ C D 1 E 1 的面积为 S

①当 1 < a < 2 时,请直接写出 S a 之间的函数表达式;

②在平移过程中,当 S = 1 4 时,请直接写出 a 的值.

来源:2016年辽宁省沈阳市中考数学试卷
  • 更新:2021-05-15
  • 题型:未知
  • 难度:未知

为了抗击新冠疫情,我市甲、乙两厂积极生产了某种防疫物资共500吨,乙厂的生产量是甲厂的2倍少100吨.这批防疫物资将运往 A 地240吨, B 地260吨,运费如下表(单位:元 / 吨).

目的地

生产厂

A

B

20

25

15

24

(1)求甲、乙两厂各生产了这批防疫物资多少吨?

(2)设这批物资从乙厂运往 A x 吨,全部运往 A B 两地的总运费为 y 元.求 y x 之间的函数关系式,并设计使总运费最少的调运方案;

(3)当每吨运费均降低 m ( 0 < m 15 m 为整数)时,按(2)中设计的调运方案运输,总运费不超过5200元.求 m 的最小值.

来源:2020年湖北省荆州市中考数学试卷
  • 更新:2020-12-31
  • 题型:未知
  • 难度:未知

为落实“绿水青山就是金山银山”的发展理念,某市政部门招标一工程队负责在山脚下修建一座水库的土方施工任务.该工程队有 A B 两种型号的挖掘机,已知3台 A 型和5台 B 型挖掘机同时施工一小时挖土165立方米;4台 A 型和7台 B 型挖掘机同时施工一小时挖土225立方米.每台 A 型挖掘机一小时的施工费用为300元,每台 B 型挖掘机一小时的施工费用为180元.

(1)分别求每台 A 型, B 型挖掘机一小时挖土多少立方米?

(2)若不同数量的 A 型和 B 型挖掘机共12台同时施工4小时,至少完成1080立方米的挖土量,且总费用不超过12960元,问施工时有哪几种调配方案,并指出哪种调配方案的施工费用最低,最低费用是多少元?

来源:2018年山东省潍坊市中考数学试卷
  • 更新:2021-05-22
  • 题型:未知
  • 难度:未知

某校足球队需购买 A B 两种品牌的足球.已知 A 品牌足球的单价比 B 品牌足球的单价高20元,且用900元购买 A 品牌足球的数量用720元购买 B 品牌足球的数量相等.

(1)求 A B 两种品牌足球的单价;

(2)若足球队计划购买 A B 两种品牌的足球共90个,且 A 品牌足球的数量不小于 B 品牌足球数量的2倍,购买两种品牌足球的总费用不超过8500元.设购买 A 品牌足球 m 个,总费用为 W 元,则该队共有几种购买方案?采用哪一种购买方案可使总费用最低?最低费用是多少元?

来源:2020年湖北省恩施州中考数学试卷
  • 更新:2020-12-31
  • 题型:未知
  • 难度:未知

某文具店购进一批纪念册,每本进价为20元,出于营销考虑,要求每本纪念册的售价不低于20元且不高于28元,在销售过程中发现该纪念册每周的销售量 y (本 ) 与每本纪念册的售价 x (元 ) 之间满足一次函数关系:当销售单价为22元时,销售量为36本;当销售单价为24元时,销售量为32本.

(1)请直接写出 y x 的函数关系式;

(2)当文具店每周销售这种纪念册获得150元的利润时,每本纪念册的销售单价是多少元?

(3)设该文具店每周销售这种纪念册所获得的利润为 w 元,将该纪念册销售单价定为多少元时,才能使文具店销售该纪念册所获利润最大?最大利润是多少?

来源:2016年辽宁省葫芦岛市中考数学试卷
  • 更新:2021-05-15
  • 题型:未知
  • 难度:未知

甲无人机从地面起飞,乙无人机从距离地面 20 m 高的楼顶起飞,两架无人机同时匀速上升 10 s .甲、乙两架无人机所在的位置距离地面的高度 y (单位: m ) 与无人机上升的时间 x (单位: s ) 之间的关系如图所示.下列说法正确的是 (    )

A.

5 s 时,两架无人机都上升了 40 m

B.

10 s 时,两架无人机的高度差为 20 m

C.

乙无人机上升的速度为 8 m / s

D.

10 s 时,甲无人机距离地面的高度是 60 m

来源:2021年重庆市中考数学试卷(A卷)
  • 更新:2021-08-17
  • 题型:未知
  • 难度:未知

某通讯公司就手机流量套餐推出三种方案,如下表:


A 方案

B 方案

C 方案

每月基本费用(元     )

20

56

266

每月免费使用流量(兆     )

1024

m

无限

超出后每兆收费(元     )

n

n


A B C 三种方案每月所需的费用 y (元 ) 与每月使用的流量 x (兆 ) 之间的函数关系如图所示.

(1)请写出 m n 的值.

(2)在 A 方案中,当每月使用的流量不少于1024兆时,求每月所需的费用 y (元 ) 与每月使用的流量 x (兆 ) 之间的函数关系式.

(3)在这三种方案中,当每月使用的流量超过多少兆时,选择 C 方案最划算?

来源:2021年浙江省宁波市中考数学试卷
  • 更新:2021-08-18
  • 题型:未知
  • 难度:未知

某品牌鞋子的长度 ycm 与鞋子的"码"数 x 之间满足一次函数关系.若22码鞋子的长度为 16 cm ,44码鞋子的长度为 27 cm ,则38码鞋子的长度为 (    )

A.

23 cm

B.

24 cm

C.

25 cm

D.

26 cm

来源:2021年安徽省中考数学试卷
  • 更新:2021-08-18
  • 题型:未知
  • 难度:未知

下面图片是七年级教科书中“实际问题与一元一次方程”的探究3.

探究3

电话计费问题

下表中有两种移动电话计费方式.

月使用费 /

主叫限定时间 / min

主叫超时费 / (元 / min )

被叫

方式一

58

150

0.25

免费

方式二

88

350

0.19

免费

考虑下列问题:

月使用费固定收:

主叫不超限定时间不再收费,主叫超时部分加收超时费,被叫免费.

(1)设一个月内用移动电话主叫为 tmin ( t 是正整数).根据上表,列表说明:当 t 在不同时间范围内取值时,按方式一和方式二如何计费.

(2)观察你的列表,你能从中发现如何根据主叫时间选择省钱的计费方式吗?通过计算验证你的看法.

小明升入初三再看这个问题,发现两种计费方式,每一种都是因主叫时间的变化而引起计费的变化,他把主叫时间视为在正实数范围内变化,决定用函数来解决这个问题.

(1)根据函数的概念,小明首先将问题中的两个变量分别设为自变量 x 和自变量的函数 y ,请你帮小明写出:

x 表示问题中的    y 表示问题中的   

并写出计费方式一和二分别对应的函数解析式;

(2)在给出的正方形网格纸上画出(1)中两个函数的大致图象,并依据图象写出如何根据主叫时间选择省钱的计费方式.(注 : 坐标轴单位长度可根据需要自己确定)

来源:2021年内蒙古呼和浩特市中考数学试卷
  • 更新:2021-08-19
  • 题型:未知
  • 难度:未知

暑期将至,某健身俱乐部面向学生推出暑期优惠活动,活动方案如下.

方案一:购买一张学生暑期专享卡,每次健身费用按六折优惠;

方案二:不购买学生暑期专享卡,每次健身费用按八折优惠.

设某学生暑期健身 x (次 ) ,按照方案一所需费用为 y 1 (元 ) ,且 y 1 = k 1 x + b ;按照方案二所需费用为 y 2 (元 ) ,且 y 2 = k 2 x .其函数图象如图所示.

(1)求 k 1 b 的值,并说明它们的实际意义;

(2)求打折前的每次健身费用和 k 2 的值;

(3)八年级学生小华计划暑期前往该俱乐部健身8次,应选择哪种方案所需费用更少?说明理由.

来源:2020年河南省中考数学试卷
  • 更新:2021-05-26
  • 题型:未知
  • 难度:未知

为了美化环境,建设宜居成都,我市准备在一个广场上种植甲、乙两种花卉,经市场调查,甲种花卉的种植费用 y (元 ) 与种植面积 x ( m 2 ) 之间的函数关系如图所示,乙种花卉的种植费用为每平方米100元.

(1)直接写出当 0 x 300 x > 300 时, y x 的函数关系式;

(2)广场上甲、乙两种花卉的种植面积共 1200 m 2 ,若甲种花卉的种植面积不少于 200 m 2 ,且不超过乙种花卉种植面积的2倍,那么应该怎样分配甲、乙两种花卉的种植面积才能使种植总费用最少?最少总费用为多少元?

来源:2018年四川省成都市中考数学试卷
  • 更新:2021-05-23
  • 题型:未知
  • 难度:未知

甲、乙两人分别从 A B 两地同时出发,匀速相向而行.甲的速度大于乙的速度,甲到达 B 地后,乙继续前行.设出发 xℎ 后,两人相距 ykm ,图中折线表示从两人出发至乙到达 A 地的过程中 y x 之间的函数关系.

根据图中信息,求:

(1)点 Q 的坐标,并说明它的实际意义;

(2)甲、乙两人的速度.

来源:2018年山东省临沂市中考数学试卷
  • 更新:2021-05-17
  • 题型:未知
  • 难度:未知

荔枝是深圳的特色水果,小明的妈妈先购买了2千克桂味和3千克糯米糍,共花费90元;后又购买了1千克桂味和2千克糯米糍,共花费55元.(每次两种荔枝的售价都不变)

(1)求桂味和糯米糍的售价分别是每千克多少元;

(2)如果还需购买两种荔枝共12千克,要求糯米糍的数量不少于桂味数量的2倍,请设计一种购买方案,使所需总费用最低.

来源:2016年广东省深圳市中考数学试卷
  • 更新:2021-02-24
  • 题型:未知
  • 难度:未知

初中数学一次函数的应用试题