为响应“绿色生活,美丽家园”号召,某社区计划种植甲、乙两种花卉来美化小区环境.若种植甲种花卉 ,乙种花卉 ,共需430元;种植甲种花卉 ,乙种花卉 ,共需260元.
(1)求:该社区种植甲种花卉 和种植乙种花卉 各需多少元?
(2)该社区准备种植两种花卉共 且费用不超过6300元,那么社区最多能种植乙种花卉多少平方米?
俄罗斯足球世界杯点燃了同学们对足球运动的热情,某学校计划购买甲、乙两种品牌的足球供学生使用.已知用1000元购买甲种足球的数量和用1600元购买乙种足球的数量相同,甲种足球的单价比乙种足球的单价少30元.
(1)求甲、乙两种品牌的足球的单价各是多少元?
(2)学校准备一次性购买甲、乙两种品牌的足球共25个,但总费用不超过1610元,那么这所学校最多购买多少个乙种品牌的足球?
东东玩具商店用500元购进一批悠悠球,很受中小学生欢迎,悠悠球很快售完,接着又用900元购进第二批这种悠悠球,所购数量是第一批数量的1.5倍,但每套进价多了5元.
(1)求第一批悠悠球每套的进价是多少元;
(2)如果这两批悠悠球每套售价相同,且全部售完后总利润不低于 ,那么每套悠悠球的售价至少是多少元?
青年志愿者爱心小分队赴山村送温暖,准备为困难村民购买一些米面.已知购买1袋大米、4袋面粉,共需240元;购买2袋大米、1袋面粉,共需165元.
(1)求每袋大米和面粉各多少元?
(2)如果爱心小分队计划购买这些米面共40袋,总费用不超过2140元,那么至少购买多少袋面粉?
为迎接“七 一”党的生日,某校准备组织师生共310人参加一次大型公益活动,租用4辆大客车和6辆小客车恰好全部坐满,已知每辆大客车的座位数比小客车多15个.
(1)求每辆大客车和每辆小客车的座位数;
(2)经学校统计,实际参加活动的人数增加了40人,学校决定调整租车方案,在保持租用车辆总数不变的情况下,为使所有参加活动的师生均有座位,最多租用小客车多少辆?
某爱心企业在政府的支持下投入资金,准备修建一批室外简易的足球场和篮球场,供市民免费使用,修建1个足球场和1个篮球场共需8.5万元,修建2个足球场和4个篮球场共需27万元.
(1)求修建一个足球场和一个篮球场各需多少万元?
(2)该企业预计修建这样的足球场和篮球场共20个,投入资金不超过90万元,求至少可以修建多少个足球场?
在运动会前夕,育红中学都会购买篮球、足球作为奖品.若购买10个篮球和15个足球共花费3000元,且购买一个篮球比购买一个足球多花50元.
(1)求购买一个篮球,一个足球各需多少元?
(2)今年学校计划购买这种篮球和足球共10个,恰逢商场在搞促销活动,篮球打九折,足球打八五折,若此次购买两种球的总费用不超过1050元,则最多可购买多少个篮球?
为落实“美丽抚顺”的工作部署,市政府计划对城区道路进行改造,现安排甲、乙两个工程队完成.已知甲队的工作效率是乙队工作效率的 倍,甲队改造360米的道路比乙队改造同样长的道路少用3天.
(1)甲、乙两工程队每天能改造道路的长度分别是多少米?
(2)若甲队工作一天需付费用7万元,乙队工作一天需付费用5万元,如需改造的道路全长1200米,改造总费用不超过145万元,至少安排甲队工作多少天?
甲从商贩 处购买了若干斤西瓜,又从商贩 处购买了若干斤西瓜. 、 两处所购买的西瓜重量之比为 ,然后将买回的西瓜以从 、 两处购买单价的平均数为单价全部卖给了乙,结果发现他赔钱了,这是因为
A.商贩 的单价大于商贩 的单价
B.商贩 的单价等于商贩 的单价
C.商贩 的单价小于商贩 的单价
D.赔钱与商贩 、商贩 的单价无关
某商店销售 型和 型两种电脑,其中 型电脑每台的利润为400元, 型电脑每台的利润为500元.该商店计划再一次性购进两种型号的电脑共100台,其中 型电脑的进货量不超过 型电脑的2倍,设购进 型电脑 台,这100台电脑的销售总利润为 元.
(1)求 关于 的函数关系式;
(2)该商店购进 型、 型电脑各多少台,才能使销售总利润最大,最大利润是多少?
(3)实际进货时,厂家对 型电脑出厂价下调 元,且限定商店最多购进 型电脑60台,若商店保持同种电脑的售价不变,请你根据以上信息,设计出使这100台电脑销售总利润最大的进货方案.
某公司计划购买 , 两种型号的机器人搬运材料.已知 型机器人比 型机器人每小时多搬运 材料,且 型机器人搬运 材料所用的时间与 型机器人搬运 材料所用的时间相同.
(1)求 , 两种型号的机器人每小时分别搬运多少材料;
(2)该公司计划采购 , 两种型号的机器人共20台,要求每小时搬运材料不得少于 ,则至少购进 型机器人多少台?
“绿水青山,就是金山银山”.某旅游景区为了保护环境,需购买 、 两种型号的垃圾处理设备共10台.已知每台 型设备日处理能力为12吨;每台 型设备日处理能力为15吨;购回的设备日处理能力不低于140吨.
(1)请你为该景区设计购买 、 两种设备的方案;
(2)已知每台 型设备价格为3万元,每台 型设备价格为4.4万元.厂家为了促销产品,规定货款不低于40万元时,则按9折优惠;问:采用(1)设计的哪种方案,使购买费用最少,为什么?
某学校积极响应怀化市“三城同创”的号召,绿化校园,计划购进 , 两种树苗,共21棵,已知 种树苗每棵90元, 种树苗每棵70元.设购买 种树苗 棵,购买两种树苗所需费用为 元.
(1)求 与 的函数表达式,其中 ;
(2)若购买 种树苗的数量少于 种树苗的数量,请给出一种费用最省的方案,并求出该方案所需费用.
郴州市正在创建“全国文明城市”,某校拟举办“创文知识”抢答赛,欲购买 、 两种奖品以鼓励抢答者.如果购买 种20件, 种15件,共需380元;如果购买 种15件, 种10件,共需280元.
(1) 、 两种奖品每件各多少元?
(2)现要购买 、 两种奖品共100件,总费用不超过900元,那么 种奖品最多购买多少件?