在运动会前夕,育红中学都会购买篮球、足球作为奖品.若购买10个篮球和15个足球共花费3000元,且购买一个篮球比购买一个足球多花50元.
(1)求购买一个篮球,一个足球各需多少元?
(2)今年学校计划购买这种篮球和足球共10个,恰逢商场在搞促销活动,篮球打九折,足球打八五折,若此次购买两种球的总费用不超过1050元,则最多可购买多少个篮球?
如图,已知二次函数y=x-4x+3的图象交x轴于A,B两点(点A在点B的左侧), 交y轴于点C.(1)求直线BC的解析式;(2)点D是在直线BC下方的抛物线上的一个动点,当△BCD的面积最大时,求D点坐标.
如图,在平面直角坐标系xOy中,点A的坐标为(﹣2,0),等边三角形AOC经过平移或轴对称或旋转都可以得到△OBD.(1)△AOC沿x轴向右平移得到△OBD,则平移的距离是 个单位长度;(2)△AOC与△BOD关于直线对称,则对称轴是 ;(3)△AOC绕原点O顺时针旋转可以得到△DOB,则旋转角度是 度,在此旋转过程中,△AOC扫过的图形的面积是 .
已知关于x的一元二次方程.(1)求证:无论k取何值,方程总有两个实数根;(2)若二次函数的图象与轴两个交点的横坐标均为整数,且k为整数,求k的值.
如图,在平面直角坐标系中,的外接圆与轴交于点,,求的长.
如图,一次函数y=3x的图象与反比例函数的图象的一个交点为A(1,m).(1)求反比例函数的解析式;(2)若点P在直线OA上,且满足PA=2OA,直接写出点的坐标(不写求解过程).