初中数学
数与式
有理数
正数和负数
有理数
数轴
相反数
绝对值
非负数的性质:绝对值
倒数
有理数大小比较
有理数的加法
有理数的减法
有理数的加减混合运算
有理数的乘法
有理数的除法
有理数的乘方
非负数的性质:偶次方
有理数的混合运算
近似数和有效数字
科学记数法—表示较大的数
科学记数法—表示较小的数
科学记数法—原数
科学记数法与有效数字
计算器—基础知识
计算器—有理数
数学常识
用数字表示事件
尾数特征
无理数与实数
平方根
算术平方根
非负数的性质:算术平方根
立方根
计算器—数的开方
无理数
实数
实数的性质
实数与数轴
实数大小比较
估算无理数的大小
实数的运算
分数指数幂
代数式
代数式
列代数式
代数式求值
同类项
合并同类项
去括号与添括号
规律型:数字的变化类
规律型:图形的变化类
整式
整式
单项式
多项式
整式的加减
整式的加减—化简求值
同底数幂的乘法
幂的乘方与积的乘方
同底数幂的除法
单项式乘单项式
单项式乘多项式
多项式乘多项式
完全平方公式
完全平方公式的几何背景
完全平方式
平方差公式
平方差公式的几何背景
整式的除法
整式的混合运算
整式的混合运算—化简求值
零指数
负整数指数幂
因式分解
因式分解的意义
公因式
因式分解-提公因式法
因式分解-运用公式法
提公因式法与公式法的综合运用
因式分解-分组分解法
因式分解-十字相乘法等
实数范围内分解因式
因式分解的应用
分式
分式的定义
分式有意义的条件
分式的值为零的条件
分式的值
分式的基本性质
约分
通分
最简分式
最简公分母
分式的乘除法
分式的加减法
分式的混合运算
分式的化简求值
零指数幂
负整数指数幂
列代数式(分式)
二次根式
二次根式的定义
二次根式有意义的条件
二次根式的性质与化简
最简二次根式
二次根式的乘除法
分母有理化
同类二次根式
二次根式的加减法
二次根式的混合运算
二次根式的化简求值
二次根式的应用
方程与不等式
一元一次方程
方程的定义
方程的解
等式的性质
一元一次方程的定义
一元一次方程的解
解一元一次方程
含绝对值符号的一元一次方程
同解方程
由实际问题抽象出一元一次方程
一元一次方程的应用
二元一次方程组
二元一次方程的定义
二元一次方程的解
解二元一次方程
由实际问题抽象出二元一次方程
二元一次方程的应用
二元一次方程组的定义
二元一次方程组的解
解二元一次方程组
由实际问题抽象出二元一次方程组
二元一次方程组的应用
同解方程组
解三元一次方程组
三元一次方程组的应用
一元二次方程
一元二次方程的定义
一元二次方程的一般形式
一元二次方程的解
估算一元二次方程的近似解
解一元二次方程-直接开平方法
解一元二次方程-配方法
解一元二次方程-公式法
解一元二次方程-因式分解法
换元法解一元二次方程
根的判别式
根与系数的关系
由实际问题抽象出一元二次方程
一元二次方程的应用
配方法的应用
高次方程
无理方程
分式方程
分式方程的定义
分式方程的解
解分式方程
换元法解分式方程
分式方程的增根
由实际问题抽象出分式方程
分式方程的应用
不等式与不等式组
不等式的定义
不等式的性质
不等式的解集
在数轴上表示不等式的解集
一元一次不等式的定义
解一元一次不等式
一元一次不等式的整数解
由实际问题抽象出一元一次不等式
一元一次不等式的应用
一元一次不等式组的定义
解一元一次不等式组
一元一次不等式组的整数解
由实际问题抽象出一元一次不等式组
一元一次不等式组的应用
函数
平面直角坐标系
点的坐标
规律型:点的坐标
坐标确定位置
坐标与图形性质
两点间的距离公式
函数基础知识
常量与变量
函数的概念
函数关系式
函数自变量的取值范围
函数值
函数的图象
动点问题的函数图象
函数的表示方法
分段函数
一次函数
一次函数的定义
正比例函数的定义
一次函数的图象
正比例函数的图象
一次函数的性质
正比例函数的性质
一次函数图象与系数的关系
一次函数图象上点的坐标特征
一次函数图象与几何变换
待定系数法求一次函数解析式
待定系数法求正比例函数解析式
一次函数与一元一次方程
一次函数与一元一次不等式
一次函数与二元一次方程(组)
两条直线相交或平行问题
根据实际问题列一次函数关系式
一次函数的应用
一次函数综合题
反比例函数
反比例函数的定义
反比例函数的图象
反比例函数图象的对称性
反比例函数的性质
反比例函数系数k的几何意义
反比例函数图象上点的坐标特征
待定系数法求反比例函数解析式
反比例函数与一次函数的交点问题
根据实际问题列反比例函数关系式
反比例函数的应用
反比例函数综合题
二次函数
二次函数的定义
二次函数的图象
二次函数的性质
二次函数图象与系数的关系
二次函数图象上点的坐标特征
二次函数图象与几何变换
二次函数的最值
待定系数法求二次函数解析式
二次函数的三种形式
抛物线与x轴的交点
图象法求一元二次方程的近似根
二次函数与不等式(组)
根据实际问题列二次函数关系式
二次函数的应用
二次函数综合题
图形的性质
图形认识初步
认识立体图形
点、线、面、体
欧拉公式
几何体的表面积
认识平面图形
几何体的展开图
展开图折叠成几何体
专题:正方体相对两个面上的文字
截一个几何体
直线、射线、线段
直线的性质:两点确定一条直线
线段的性质:两点之间线段最短
两点间的距离
比较线段的长短
角的概念
钟面角
方向角
度分秒的换算
角平分线的定义
角的计算
余角和补角
七巧板
线段的和差
角的大小比较
计算器-角的换算
线段的中点
相交线与平行线
相交线
对顶角、邻补角
垂线
垂线段最短
点到直线的距离
同位角、内错角、同旁内角
平行线
平行公理及推论
平行线的判定
平行线的性质
平行线的判定与性质
平行线之间的距离
三角形
三角形
三角形的角平分线、中线和高
三角形的面积
三角形的稳定性
三角形的重心
三角形三边关系
三角形内角和定理
三角形的外角性质
全等图形
全等三角形的性质
全等三角形的判定
直角三角形全等的判定
全等三角形的判定与性质
全等三角形的应用
角平分线的性质
线段垂直平分线的性质
等腰三角形的性质
等腰三角形的判定
等腰三角形的判定与性质
等边三角形的性质
等边三角形的判定
等边三角形的判定与性质
直角三角形的性质
含30度角的直角三角形
直角三角形斜边上的中线
勾股定理
勾股定理的证明
勾股定理的逆定理
勾股数
勾股定理的应用
平面展开-最短路径问题
等腰直角三角形
三角形中位线定理
三角形综合题
四边形
多边形
多边形的对角线
多边形内角与外角
平面镶嵌(密铺)
平行四边形的性质
平行四边形的判定
平行四边形的判定与性质
菱形的性质
菱形的判定
菱形的判定与性质
矩形的性质
矩形的判定
矩形的判定与性质
正方形的性质
正方形的判定
正方形的判定与性质
梯形
直角梯形
等腰梯形的性质
等腰梯形的判定
梯形中位线定理
*平面向量
中点四边形
四边形综合题
平面向量的加法
平面向量的减法
圆的认识
垂径定理
垂径定理的应用
圆心角、弧、弦的关系
圆周角定理
圆内接四边形的性质
相交弦定理
点与圆的位置关系
确定圆的条件
三角形的外接圆与外心
直线与圆的位置关系
切线的性质
切线的判定
切线的判定与性质
弦切角定理
切线长定理
切割线定理
三角形的内切圆与内心
圆与圆的位置关系
相切两圆的性质
相交两圆的性质
正多边形和圆
弧长的计算
扇形面积的计算
圆锥的计算
圆柱的计算
圆的综合题
尺规作图
作图—尺规作图的定义
作图—基本作图
作图—复杂作图
作图—应用与设计作图
作图—代数计算作图
命题与证明
命题与定理
推理与论证
反证法
轨迹
图形的变化
图形的对称
生活中的轴对称现象
轴对称的性质
轴对称图形
镜面对称
关于x轴、y轴对称的点的坐标
坐标与图形变化-对称
作图-轴对称变换
利用轴对称设计图案
剪纸问题
轴对称-最短路线问题
翻折变换(折叠问题)
图形的剪拼
胡不归问题
线段的垂直平分线定理
线段垂直平分线逆定理
作图--线段垂直平分
角平分线定理
角平分线逆定理
图形的平移
生活中的平移现象
平移的性质
坐标与图形变化-平移
作图-平移变换
利用平移设计图案
图形的旋转
生活中的旋转现象
旋转的性质
旋转对称图形
中心对称
中心对称图形
关于原点对称的点的坐标
坐标与图形变化-旋转
作图-旋转变换
利用旋转设计图案
几何变换的类型
几何变换综合题
图形的相似
比例的性质
比例线段
黄金分割
平行线分线段成比例
相似图形
相似多边形的性质
相似三角形的性质
相似三角形的判定
相似三角形的判定与性质
相似三角形的应用
作图—相似变换
位似变换
作图-位似变换
射影定理
相似形综合题
实数与向量相乘
平面向量定理
向量的线性运算
锐角三角函数
锐角三角函数的定义
锐角三角函数的增减性
同角三角函数的关系
互余两角三角函数的关系
特殊角的三角函数值
计算器—三角函数
解直角三角形
解直角三角形的应用
解直角三角形的应用-坡度坡角问题
解直角三角形的应用-仰角俯角问题
解直角三角形的应用-方向角问题
投影与视图
简单几何体的三视图
简单组合体的三视图
由三视图判断几何体
作图-三视图
平行投影
中心投影
视点、视角和盲区
统计与概率
数据收集与处理
调查收集数据的过程与方法
全面调查与抽样调查
总体、个体、样本、样本容量
抽样调查的可靠性
用样本估计总体
频数与频率
频数(率)分布表
频数(率)分布直方图
频数(率)分布折线图
统计表
扇形统计图
条形统计图
折线统计图
统计图的选择
其他统计图
数据分析
算术平均数
加权平均数
计算器-平均数
中位数
众数
极差
方差
标准差
计算器-标准差与方差
统计量的选择
概率
随机事件
可能性的大小
概率的意义
概率公式
几何概率
列表法与树状图法
游戏公平性
利用频率估计概率
模拟实验
数学竞赛
逻辑推理问题
抽屉原理
排列与组合问题
加法原理与乘法原理
容斥原理
简单的极端原理
简单的枚举法
计数方法
染色问题
整数问题
数的十进制
奇数与偶数
数的整除性
带余除法
质数与合数
约数与倍数
同余问题
尾数特征
完全平方数
质因数分解
整数问题的综合运用
数与式
有理数无理数的概念与运算
因式定理与综合除法
余式定理
立方公式
整式的等式证明
对称式和轮换对称式
部分分式
分式的条件求值
分式的等式证明
拆项、添项、配方、待定系数法
绝对值
因式分解
方程与不等式
含字母系数的一元一次方程
含绝对值符号的一元一次方程
二元一次不定方程的整数解
二元一次不定方程的应用
三元一次不定方程
非一次不定方程(组)
多元一次方程组
含字母系数的一元二次方程
含绝对值符号的一元二次方程
一元二次方程的整数根与有理根
一元二次方程根的分布
高次方程
无理方程
二元二次方程组
含字母系数的一元一次不等式
含绝对值的一元一次不等式
一元二次不等式
应用类问题
函数
y=|ax+b|的图象与性质
y=|ax#178;+bx+c|的图象与性质
含字母系数的二次函数
整式函数的最值
分式函数的最值
绝对值函数的最值
无理函数的最值
多元函数的最值
一元二次方程的最值
二次函数在给定区间上的最值
几何问题的最值
实际问题的最值
取整函数
一次函数的最值
函数最值问题
几何
三角形边角关系
面积及等积变换
三角形的五心
四点共圆
圆幂定理
梅涅劳斯定理与塞瓦定理
正弦定理与余弦定理
四种命题及其关系
一笔画定理
几何不等式
立体图形
路线选择问题

重庆小面是重庆美食的名片之一,深受外地游客和本地民众欢迎.某面馆向食客推出经典特色重庆小面,顾客可到店食用(简称"堂食"小面),也可购买搭配佐料的袋装生面(简称"生食"小面).已知3份"堂食"小面和2份"生食"小面的总售价为31元,4份"堂食"小面和1份"生食"小面的总售价为33元.

(1)求每份"堂食"小面和"生食"小面的价格分别是多少元?

(2)该面馆在4月共卖出"堂食"小面4500份,"生食"小面2500份.为回馈广大食客,该面馆从5月1日起每份"堂食"小面的价格保持不变,每份"生食"小面的价格降低 3 4 a % .统计5月的销量和销售额发现:"堂食"小面的销量与4月相同,"生食"小面的销量在4月的基础上增加 5 2 a % ,这两种小面的总销售额在4月的基础上增加 5 11 a % .求 a 的值.

来源:2021年重庆市中考数学试卷(B卷)
  • 更新:2021-08-17
  • 题型:解答题
  • 难度:中等

某公司生产的一种营养品信息如表.已知甲食材每千克的进价是乙食材的2倍,用80元购买的甲食材比用20元购买的乙食材多1千克.

营养品信息表

营养成份

每千克含铁42毫克

配料表

原料

每千克含铁

甲食材

50毫克

乙食材

10毫克

规格

每包食材含量

每包单价

A 包装

1千克

45元

B 包装

0.25千克

12元

(1)问甲、乙两种食材每千克进价分别是多少元?

(2)该公司每日用18000元购进甲、乙两种食材并恰好全部用完.

①问每日购进甲、乙两种食材各多少千克?

②已知每日其他费用为2000元,且生产的营养品当日全部售出.若 A 的数量不低于 B 的数量,则 A 为多少包时,每日所获总利润最大?最大总利润为多少元?

来源:2021年浙江省温州市中考数学试卷
  • 更新:2021-08-17
  • 题型:解答题
  • 难度:较难

我国明代数学读本《算法统宗》有一道题,其题意为:客人一起分银子,若每人7两,还剩4两;若每人9两,则差8两.银子共有  两.

来源:2021年浙江省绍兴市中考数学试卷
  • 更新:2021-08-17
  • 题型:填空题
  • 难度:较易

我市某中学计划举行以“奋斗百年路,启航新征程”为主题的知识竞赛,并对获奖的同学给予奖励.现要购买甲、乙两种奖品,已知1件甲种奖品和2件乙种奖品共需40元,2件甲种奖品和3件乙种奖品共需70元.

(1)求甲、乙两种奖品的单价;

(2)根据颁奖计划,该中学需甲、乙两种奖品共60件,且甲种奖品的数量不少于乙种奖品数量的 1 2 ,应如何购买才能使总费用最少?并求出最少费用.

来源:2021年四川省资阳市中考数学试卷
  • 更新:2021-08-15
  • 题型:解答题
  • 难度:中等

某运输公司有 A B 两种货车,3辆 A 货车与2辆 B 货车一次可以运货90吨,5辆 A 货车与4辆 B 货车一次可以运货160吨.

(1)请问1辆 A 货车和1辆 B 货车一次可以分别运货多少吨?

(2)目前有190吨货物需要运输,该运输公司计划安排 A B 两种货车将全部货物一次运完 ( A B 两种货车均满载),其中每辆 A 货车一次运货花费500元,每辆 B 货车一次运货花费400元.请你列出所有的运输方案,并指出哪种运输方案费用最少.

来源:2021年四川省泸州市中考数学试卷
  • 更新:2021-08-16
  • 题型:解答题
  • 难度:中等

《九章算术》卷八方程第十题原文为:"今有甲、乙二人持钱不知其数.甲得乙半而钱五十,乙得甲太半而亦钱五十.问:甲、乙持钱各几何?"题目大意是:甲、乙两人各带了若干钱.如果甲得到乙所有钱的一半,那么甲共有钱50;如果乙得到甲所有钱的 2 3 ,那么乙也共有钱50.问:甲、乙两人各带了多少钱?设甲、乙两人持钱的数量分别为 x y ,则可列方程组为 (    )

A.

x + 1 2 y = 50 y + 2 3 x = 50

B.

x 1 2 y = 50 y 2 3 x = 50

C.

2 x + y = 50 x + 2 3 y = 50

D.

2 x y = 50 x 2 3 y = 50

来源:2021年四川省成都市中考数学试卷
  • 更新:2021-08-12
  • 题型:选择题
  • 难度:较易

为传承优秀传统文化,某地青少年活动中心计划分批次购进四大名著:《西游记》、《水浒传》、《三国演义》、《红楼梦》.第一次购进《西游记》50本,《水浒传》60本,共花费6600元;第二次购进《西游记》40本,《水浒传》30本,共花费4200元.

(1)求《西游记》和《水浒传》每本的售价分别是多少元;

(2)青少年活动中心决定再购买上述四种图书,总费用不超过32000元.如果《西游记》比《三国演义》每本售价多10元,《水浒传》比《红楼梦》每本售价少10元,要使先后购进的四大名著刚好配套(四大名著各一本为一套),那么这次最多购买《西游记》多少本?

来源:2021年内蒙古赤峰市中考数学试卷
  • 更新:2021-08-19
  • 题型:解答题
  • 难度:中等

某班计划购买两种毕业纪念册,已知购买1本手绘纪念册和4本图片纪念册共需135元,购买5本手绘纪念册和2本图片纪念册共需225元.

(1)求每本手绘纪念册和每本图片纪念册的价格分别为多少元?

(2)该班计划购买手绘纪念册和图片纪念册共40本,总费用不超过1100元,那么最多能购买手绘纪念册多少本?

来源:2021年辽宁省本溪市中考数学试卷
  • 更新:2021-08-19
  • 题型:解答题
  • 难度:未知

为了做好防疫工作,学校准备购进一批消毒液.已知2瓶 A 型消毒液和3瓶 B 型消毒液共需41元,5瓶 A 型消毒液和2瓶 B 型消毒液共需53元.

(1)这两种消毒液的单价各是多少元?

(2)学校准备购进这两种消毒液共90瓶,且 B 型消毒液的数量不少于 A 型消毒液数量的 1 3 ,请设计出最省钱的购买方案,并求出最少费用.

来源:2021年江苏省连云港市中考数学试卷
  • 更新:2021-08-21
  • 题型:解答题
  • 难度:未知

港珠澳大桥是世界上最长的跨海大桥,它由桥梁和隧道两部分组成,桥梁和隧道全长共 55 km .其中桥梁长度比隧道长度的9倍少 4 km .求港珠澳大桥的桥梁长度和隧道长度.

来源:2021年吉林省中考数学试卷
  • 更新:2021-08-21
  • 题型:解答题
  • 难度:未知

为庆祝中国共产党成立100周年,某校计划举行“学党史 感党恩”知识竞答活动,并计划购置篮球、钢笔、笔记本作为奖品.采购员刘老师在某文体用品店购买了做为奖品的三种物品,回到学校后发现发票被弄花了,有几个数据变得不清楚,如图.

请根据图所示的发票中的信息,帮助刘老师复原弄花的数据,即分别求出购置钢笔、笔记本的数量及对应的金额.

来源:2021年湖南省邵阳市中考数学试卷
  • 更新:2021-08-21
  • 题型:解答题
  • 难度:未知

《九章算术》中有一道阐述“盈不足术”的问题,原文如下:

今有共买物,人出八,盈三;人出七,不足四.问人数、物价各几何?

意思是:几个人一起去购买某物品,如果每人出8钱,则多了3钱;如果每人出7钱,则少了4钱.问有多少人,物品的价值是多少?

该问题中物品的价值是  钱.

来源:2021年湖南省邵阳市中考数学试卷
  • 更新:2021-08-21
  • 题型:填空题
  • 难度:较易

为了庆祝中国共产党建党一百周年,某校举行“礼赞百年,奋斗有我”演讲比赛,准备购买甲、乙两种纪念品奖励在活动中表现优秀的学生.已知购买1个甲种纪念品和2个乙种纪念品共需20元,购买2个甲种纪念品和5个乙种纪念品共需45元.

(1)求购买一个甲种纪念品和一个乙种纪念品各需多少元;

(2)若要购买这两种纪念品共100个,投入资金不少于766元又不多于800元,问有多少种购买方案?并求出所花资金的最小值.

来源:2021年湖南省娄底市中考数学试卷
  • 更新:2021-08-21
  • 题型:解答题
  • 难度:未知

某超市从厂家购进 A B 两种型号的水杯,两次购进水杯的情况如表:

进货批次

A 型水杯(个     )

B 型水杯(个     )

总费用(元     )

100

200

8000

200

300

13000

(1)求 A B 两种型号的水杯进价各是多少元?

(2)在销售过程中, A 型水杯因为物美价廉而更受消费者喜欢.为了增大 B 型水杯的销售量,超市决定对 B 型水杯进行降价销售,当销售价为44元时,每天可以售出20个,每降价1元,每天将多售出5个,请问超市应将 B 型水杯降价多少元时,每天售出 B 型水杯的利润达到最大?最大利润是多少?

(3)第三次进货用10000元钱购进这两种水杯,如果每销售出一个 A 型水杯可获利10元,售出一个 B 型水杯可获利9元,超市决定每售出一个 A 型水杯就为当地"新冠疫情防控"捐 b 元用于购买防控物资.若 A B 两种型号的水杯在全部售出的情况下,捐款后所得的利润始终不变,此时 b 为多少?利润为多少?

来源:2021年湖南省怀化市中考数学试卷
  • 更新:2021-08-16
  • 题型:解答题
  • 难度:较难

某汽车贸易公司销售 A B 两种型号的新能源汽车, A 型车进货价格为每台12万元, B 型车进货价格为每台15万元,该公司销售2台 A 型车和5台 B 型车,可获利3.1万元,销售1台 A 型车和2台 B 型车,可获利1.3万元.

(1)求销售一台 A 型、一台 B 型新能源汽车的利润各是多少万元?

(2)该公司准备用不超过300万元资金,采购 A B 两种新能源汽车共22台,问最少需要采购 A 型新能源汽车多少台?

来源:2021年湖南省常德市中考数学试卷
  • 更新:2021-08-01
  • 题型:解答题
  • 难度:未知

初中数学二元一次方程组的应用试题