初中数学

在2020年新冠肺炎疫情期间,某中学响应政府有“停课不停学”的号召,充分利用网络资源进行网上学习,九年级1班的全体同学在自主完成学习任务的同时,彼此关怀,全班每两个同学都通过一次电话,互相勉励,共同提高,如果该班共有48名同学,若每两名同学之间仅通过一次电话,那么全班同学共通过多少次电话呢?我们可以用下面的方式来解决问题.

用点A1A2A3A48分表示第1名同学、第2名同学、第3名同学…第48名同学,把该班级人数x与通电话次数y之间的关系用如图模型表示:

(1)填写上图中第四个图中y的值为  ,第五个图中y的值为  

(2)通过探索发现,通电话次数y与该班级人数x之间的关系式为   ,当 x 48 时,对应的y     

(3)若九年级1班全体女生相互之间共通话190次,问:该班共有多少名女生?

来源:2020年贵州省黔南州中考数学试卷
  • 更新:2021-05-26
  • 题型:未知
  • 难度:未知

列方程(组 ) 解应用题

端午节期间,某水果超市调查某种水果的销售情况,下面是调查员的对话:

小王:该水果的进价是每千克22元;

小李:当销售价为每千克38元时,每天可售出160千克;若每千克降低3元,每天的销售量将增加120千克.

根据他们的对话,解决下面所给问题:超市每天要获得销售利润3640元,又要尽可能让顾客得到实惠,求这种水果的销售价为每千克多少元?

来源:2021年山东省菏泽市中考数学试卷
  • 更新:2021-08-17
  • 题型:未知
  • 难度:未知

“中国人的饭碗必须牢牢掌握在咱们自己手中”.为优选品种,提高产量,某农业科技小组对 A B 两个小麦品种进行种植对比实验研究.去年 A B 两个品种各种植了10亩.收获后 A B 两个品种的售价均为2.4元 / kg ,且 B 的平均亩产量比 A 的平均亩产量高 100 kg A B 两个品种全部售出后总收入为21600元.

(1)请求出 A B 两个品种去年平均亩产量分别是多少?

(2)今年,科技小组加大了小麦种植的科研力度,在 A B 种植亩数不变的情况下,预计 A B 两个品种平均亩产量将在去年的基础上分别增加 a % 2 a % .由于 B 品种深受市场的欢迎,预计每千克价格将在去年的基础上上涨 a % ,而 A 品种的售价不变. A B 两个品种全部售出后总收入将在去年的基础上增加 20 9 a % .求 a 的值.

来源:2020年重庆市中考数学试卷(a卷)
  • 更新:2021-05-26
  • 题型:未知
  • 难度:未知

某工厂有甲、乙两个车间,甲车间生产 A 产品,乙车间生产 B 产品,去年两个车间生产产品的数量相同且全部售出.已知 A 产品的销售单价比 B 产品的销售单价高100元,1件 A 产品与1件 B 产品售价和为500元.

(1) A B 两种产品的销售单价分别是多少元?

(2)随着 5 G 时代的到来,工业互联网进入了快速发展时期.今年,该工厂计划依托工业互联网将乙车间改造为专供用户定制 B 产品的生产车间.预计 A 产品在售价不变的情况下产量将在去年的基础上增加 a % B 产品产量将在去年的基础上减少 a % ,但 B 产品的销售单价将提高 3 a % .则今年 A B 两种产品全部售出后总销售额将在去年的基础上增加 29 25 a % .求 a 的值.

来源:2021年重庆市中考数学试卷(A卷)
  • 更新:2021-08-17
  • 题型:未知
  • 难度:未知

“杂交水稻之父” 袁隆平先生所率领的科研团队在增产攻坚第一阶段实现水稻亩产量700公斤的目标,第三阶段实现水稻亩产量1008公斤的目标.

(1)如果第二阶段、第三阶段亩产量的增长率相同,求亩产量的平均增长率;

(2)按照(1)中亩产量增长率,科研团队期望第四阶段水稻亩产量达到1200公斤,请通过计算说明他们的目标能否实现.

来源:2021年山东省东营市中考数学试卷
  • 更新:2021-08-17
  • 题型:未知
  • 难度:未知

列方程(组 ) 解应用题

某驻村工作队,为带动群众增收致富,巩固脱贫攻坚成效,决定在该村山脚下,围一块面积为 600 m 2 的矩形试验茶园,便于成功后大面积推广.如图所示,茶园一面靠墙,墙长 35 m ,另外三面用 69 m 长的篱笆围成,其中一边开有一扇 1 m 宽的门(不包括篱笆).求这个茶园的长和宽.

来源:2020年西藏中考数学试卷
  • 更新:2021-05-26
  • 题型:未知
  • 难度:未知

去年某商店“十一黄金周”进行促销活动期间,前六天的总营业额为450万元,第七天的营业额是前六天总营业额的 12 %

[小题1]求该商店去年“十一黄金周”这七天的总营业额;

[小题2]去年,该商店7月份的营业额为350万元,8、9月份营业额的月增长率相同,“十一黄金周”这七天的总营业额与9月份的营业额相等.求该商店去年8、9月份营业额的月增长率.

来源:2020年上海市中考数学试卷
  • 更新:2021-05-26
  • 题型:未知
  • 难度:未知

某服装店以每件30元的价格购进一批 T 恤,如果以每件40元出售,那么一个月内能售出300件,根据以往销售经验,销售单价每提高1元,销售量就会减少10件,设 T 恤的销售单价提高 x 元.

(1)服装店希望一个月内销售该种 T 恤能获得利润3360元,并且尽可能减少库存,问 T 恤的销售单价应提高多少元?

(2)当销售单价定为多少元时,该服装店一个月内销售这种 T 恤获得的利润最大?最大利润是多少元?

来源:2021年四川省遂宁市中考数学试卷
  • 更新:2021-08-16
  • 题型:未知
  • 难度:未知

一商店销售某种商品,平均每天可售出20件,每件盈利40元.为了扩大销售、增加盈利,该店采取了降价措施,在每件盈利不少于25元的前提下,经过一段时间销售,发现销售单价每降低1元,平均每天可多售出2件.

(1)若降价3元,则平均每天销售数量为  件;

(2)当每件商品降价多少元时,该商店每天销售利润为1200元?

来源:2018年江苏省盐城市中考数学试卷
  • 更新:2021-05-25
  • 题型:未知
  • 难度:未知

小敏与小霞两位同学解方程 3 ( x - 3 ) = ( x - 3 ) 2 的过程如下框:

小敏:

两边同除以 ( x - 3 ) ,得

3 = x - 3

x = 6

小霞:

移项,得 3 ( x - 3 ) - ( x - 3 ) 2 = 0

提取公因式,得 ( x - 3 ) ( 3 - x - 3 ) = 0

x - 3 = 0 3 - x - 3 = 0

解得 x 1 = 3 x 2 = 0

你认为他们的解法是否正确?若正确请在框内打“ ”;若错误请在框内打“ × ”,并写出你的解答过程.

来源:2021年浙江省嘉兴市中考数学试卷
  • 更新:2021-08-17
  • 题型:未知
  • 难度:未知

阅读材料:各类方程的解法

求解一元一次方程,根据等式的基本性质,把方程转化为 x = a 的形式.求解二元一次方程组,把它转化为一元一次方程来解;类似的,求解三元一次方程组,把它转化为解二元一次方程组.求解一元二次方程,把它转化为两个一元一次方程来解.求解分式方程,把它转化为整式方程来解,由于“去分母”可能产生增根,所以解分式方程必须检验.各类方程的解法不尽相同,但是它们有一个共同的基本数学思想 转化,把未知转化为已知.

用“转化”的数学思想,我们还可以解一些新的方程.例如,一元三次方程 x 3 + x 2 2 x = 0 ,可以通过因式分解把它转化为 x ( x 2 + x 2 ) = 0 ,解方程 x = 0 x 2 + x 2 = 0 ,可得方程 x 3 + x 2 2 x = 0 的解.

(1)问题:方程 x 3 + x 2 2 x = 0 的解是 x 1 = 0 x 2 =    x 3 =   

(2)拓展:用“转化”思想求方程 2 x + 3 = x 的解;

(3)应用:如图,已知矩形草坪 ABCD 的长 AD = 8 m ,宽 AB = 3 m ,小华把一根长为 10 m 的绳子的一端固定在点 B ,沿草坪边沿 BA AD 走到点 P 处,把长绳 PB 段拉直并固定在点 P ,然后沿草坪边沿 PD DC 走到点 C 处,把长绳剩下的一段拉直,长绳的另一端恰好落在点 C .求 AP 的长.

来源:2018年江苏省常州市中考数学试卷
  • 更新:2021-05-24
  • 题型:未知
  • 难度:未知

温州某企业安排65名工人生产甲、乙两种产品,每人每天生产2件甲或1件乙,甲产品每件可获利15元.根据市场需求和生产经验,乙产品每天产量不少于5件,当每天生产5件时,每件可获利120元,每增加1件,当天平均每件利润减少2元.设每天安排 x 人生产乙产品.

(1)根据信息填表:

产品种类

每天工人数(人 )

每天产量(件 )

每件产品可获利润(元 )

  

  

15

x

x

  

(2)若每天生产甲产品可获得的利润比生产乙产品可获得的利润多550元,求每件乙产品可获得的利润.

(3)该企业在不增加工人的情况下,增加生产丙产品,要求每天甲、丙两种产品的产量相等.已知每人每天可生产1件丙(每人每天只能生产一件产品),丙产品每件可获利30元,求每天生产三种产品可获得的总利润 W (元 ) 的最大值及相应的 x 值.

来源:2018年浙江省温州市中考数学试卷
  • 更新:2021-05-24
  • 题型:未知
  • 难度:未知

如图,在 ΔABC 中, ACB = 90 ° ,以点 B 为圆心, BC 长为半径画弧,交线段 AB 于点 D ;以点 A 为圆心, AD 长为半径画弧,交线段 AC 于点 E ,连接 CD

(1)若 A = 28 ° ,求 ACD 的度数.

(2)设 BC = a AC = b

①线段 AD 的长是方程 x 2 + 2 ax b 2 = 0 的一个根吗?说明理由.

②若 AD = EC ,求 a b 的值.

来源:2018年浙江省杭州市中考数学试卷
  • 更新:2021-05-24
  • 题型:未知
  • 难度:未知

根据衢州市统计局发布的统计数据显示,衢州市近5年国民生产总值数据如图1所示,2016年国民生产总值中第一产业,第二产业,第三产业所占比例如图2所示.

请根据图中信息,解答下列问题:

(1)求2016年第一产业生产总值(精确到1亿元)

(2)2016年比2015年的国民生产总值增加了百分之几?(精确到 1 % )

(3)若要使2018年的国民生产总值达到1573亿元,求2016年至2018年我市国民生产总值的平均增长率(精确到 1 % )

来源:2017年浙江省衢州市中考数学试卷
  • 更新:2021-05-24
  • 题型:未知
  • 难度:未知

已知关于 x 的一元二次方程 x 2 2 x + a = 0 的两实数根 x 1 x 2 满足 x 1 x 2 + x 1 + x 2 > 0 ,求 a 的取值范围.

来源:2018年四川省遂宁市中考数学试卷
  • 更新:2021-05-23
  • 题型:未知
  • 难度:未知

初中数学一元二次方程解答题