为积极响应新旧动能转换,提高公司经济效益,某科技公司近期研发出一种新型高科技设备,每台设备成本价为30万元,经过市场调研发现,每台售价为40万元时,年销售量为600台;每台售价为45万元时,年销售量为550台.假定该设备的年销售量 (单位:台)和销售单价 (单位:万元)成一次函数关系.
(1)求年销售量 与销售单价 的函数关系式;
(2)根据相关规定,此设备的销售单价不得高于70万元,如果该公司想获得10000万元的年利润,则该设备的销售单价应是多少万元?
阅读材料:各类方程的解法
求解一元一次方程,根据等式的基本性质,把方程转化为 的形式.求解二元一次方程组,把它转化为一元一次方程来解;类似的,求解三元一次方程组,把它转化为解二元一次方程组.求解一元二次方程,把它转化为两个一元一次方程来解.求解分式方程,把它转化为整式方程来解,由于“去分母”可能产生增根,所以解分式方程必须检验.各类方程的解法不尽相同,但是它们有一个共同的基本数学思想 转化,把未知转化为已知.
用“转化”的数学思想,我们还可以解一些新的方程.例如,一元三次方程 ,可以通过因式分解把它转化为 ,解方程 和 ,可得方程 的解.
(1)问题:方程 的解是 , , ;
(2)拓展:用“转化”思想求方程 的解;
(3)应用:如图,已知矩形草坪 的长 ,宽 ,小华把一根长为 的绳子的一端固定在点 ,沿草坪边沿 , 走到点 处,把长绳 段拉直并固定在点 ,然后沿草坪边沿 、 走到点 处,把长绳剩下的一段拉直,长绳的另一端恰好落在点 .求 的长.
工人师傅用一块长为 ,宽为 的矩形铁皮制作一个无盖的长方体容器,需要将四角各裁掉一个正方形.(厚度不计)
(1)在图中画出裁剪示意图,用实线表示裁剪线,虚线表示折痕;并求长方体底面面积为 时,裁掉的正方形边长多大?
(2)若要求制作的长方体的底面长不大于底面宽的五倍,并在容器外表面进行防锈处理,侧面每平方分米的费用为0.5元,底面每平方分米的费用为2元,裁掉的正方形边长多大时,总费用最低,最低为多少?
今年以来,我市接待的游客人数逐月增加,据统计,游玩某景区的游客人数三月份为4万人,五月份为5.76万人.
(1)求四月和五月这两个月中该景区游客人数平均每月增长百分之几;
(2)若该景区仅有 , 两个景点,售票处出示的三种购票方式如下表所示:
购票方式 |
甲 |
乙 |
丙 |
可游玩景点 |
|
|
和 |
门票价格 |
100元 人 |
80元 人 |
160元 人 |
据预测,六月份选择甲、乙、丙三种购票方式的人数分别有2万、3万和2万,并且当甲、乙两种门票价格不变时,丙种门票价格每下降1元,将有600人原计划购买甲种门票的游客和400人原计划购买乙种门票的游客改为购买丙种门票.
①若丙种门票价格下降10元,求景区六月份的门票总收入;
②问:将丙种门票价格下降多少元时,景区六月份的门票总收入有最大值?最大值是多少万元?
根据要求,解答下列问题:
①方程 的解为 ;
②方程 的解为 ;
③方程 的解为 ;
(2)根据以上方程特征及其解的特征,请猜想:
①方程 的解为 ;
②关于 的方程 的解为 , .
(3)请用配方法解方程 ,以验证猜想结论的正确性.
如图,在 中, ,以点 为圆心, 长为半径画弧,交线段 于点 ;以点 为圆心, 长为半径画弧,交线段 于点 ,连接 .
(1)若 ,求 的度数.
(2)设 , .
①线段 的长是方程 的一个根吗?说明理由.
②若 ,求 的值.
为满足市场需求,新生活超市在端午节前夕购进价格为3元 个的某品牌粽子,根据市场预测,该品牌粽子每个售价4元时,每天能出售500个,并且售价每上涨0.1元,其销售量将减少10个,为了维护消费者利益,物价部门规定,该品牌粽子售价不能超过进价的 ,请你利用所学知识帮助超市给该品牌粽子定价,使超市每天的销售利润为800元.
“杂交水稻之父” 袁隆平先生所率领的科研团队在增产攻坚第一阶段实现水稻亩产量700公斤的目标,第三阶段实现水稻亩产量1008公斤的目标.
(1)如果第二阶段、第三阶段亩产量的增长率相同,求亩产量的平均增长率;
(2)按照(1)中亩产量增长率,科研团队期望第四阶段水稻亩产量达到1200公斤,请通过计算说明他们的目标能否实现.
某商场对某种商品进行销售,第 天的销售单价为 元 件,日销售量为 件,其中 , 分别是 ,且 为整数)的一次函数,销售情况如表:
销售第 天 |
第1天 |
第2天 |
第3天 |
第4天 |
|
第30天 |
销售单价 (元 件) |
49 |
48 |
47 |
46 |
|
20 |
日销售量 (件 |
45 |
50 |
55 |
60 |
|
190 |
(1)观察表中数据,分别直接写出 与 , 与 的函数关系式: , ;
(2)求商场销售该商品第几天时该商品的日销售额恰好为3600元?
(3)销售商品的第15天为儿童节,请问:在儿童节前(不包括儿童节当天)销售该商品第几天时该商品的日销售额最多?商场决定将这天该商品的日销售额捐献给儿童福利院,试求出商场可捐款多少元?
在面积都相等的所有矩形中,当其中一个矩形的一边长为1时,它的另一边长为3.
(1)设矩形的相邻两边长分别为 , .
①求 关于 的函数表达式;
②当 时,求 的取值范围;
(2)圆圆说其中有一个矩形的周长为6,方方说有一个矩形的周长为10,你认为圆圆和方方的说法对吗?为什么?
重庆小面是重庆美食的名片之一,深受外地游客和本地民众欢迎.某面馆向食客推出经典特色重庆小面,顾客可到店食用(简称"堂食"小面),也可购买搭配佐料的袋装生面(简称"生食"小面).已知3份"堂食"小面和2份"生食"小面的总售价为31元,4份"堂食"小面和1份"生食"小面的总售价为33元.
(1)求每份"堂食"小面和"生食"小面的价格分别是多少元?
(2)该面馆在4月共卖出"堂食"小面4500份,"生食"小面2500份.为回馈广大食客,该面馆从5月1日起每份"堂食"小面的价格保持不变,每份"生食"小面的价格降低 .统计5月的销量和销售额发现:"堂食"小面的销量与4月相同,"生食"小面的销量在4月的基础上增加 ,这两种小面的总销售额在4月的基础上增加 .求 的值.
小敏与小霞两位同学解方程 的过程如下框:
小敏: 两边同除以 ,得 , 则 . |
小霞: 移项,得 , 提取公因式,得 . 则 或 , 解得 , . |
你认为他们的解法是否正确?若正确请在框内打“ ”;若错误请在框内打“ ”,并写出你的解答过程.
已知关于 的一元二次方程 .
(1)若方程有两个不相等的实数根,求 的取值范围;
(2)二次函数 的部分图象如图所示,求一元二次方程 的解.
列方程(组 解应用题
某驻村工作队,为带动群众增收致富,巩固脱贫攻坚成效,决定在该村山脚下,围一块面积为 的矩形试验茶园,便于成功后大面积推广.如图所示,茶园一面靠墙,墙长 ,另外三面用 长的篱笆围成,其中一边开有一扇 宽的门(不包括篱笆).求这个茶园的长和宽.