如图,在平面直角坐标系中,点,、,、,,,,均在反比例函数的图象上,点、、、、均在轴的正半轴上,且△、△、△、、△均为等腰直角三角形,、、、、分别为以上等腰直角三角形的底边,则的值等于 .
是不为1的有理数,我们把 称为 的差倒数,如2的差倒数为 , 的差倒数 ,已知 , 是 的差倒数, 是 的差倒数, 是 的差倒数 ,依此类推, 的值是
A. |
5 |
B. |
|
C. |
|
D. |
|
我国的《洛书》中记载着世界上最古老的一个幻方:将这九个数字填入的方格内,使三行、三列、两对角线上的三个数之和都相等.如图的幻方中,字母所表示的数是 .
在数的学习过程中,我们总会对其中一些具有某种特性的数进行研究,如学习自然数时,我们研究了偶数、奇数、合数、质数等.现在我们来研究一种特殊的自然数 “纯数”.
定义:对于自然数,在通过列竖式进行的运算时各位都不产生进位现象,则称这个自然数为“纯数”.
例如:32是“纯数”,因为在列竖式计算时各位都不产生进位现象;23不是“纯数”,因为在列竖式计算时个位产生了进位.
(1)请直接写出1949到2019之间的“纯数”;
(2)求出不大于100的“纯数”的个数,并说明理由.
观察下列各个等式的规律:
第一个等式:,第二个等式:,第三个等式:
请用上述等式反映出的规律解决下列问题:
(1)直接写出第四个等式;
(2)猜想第个等式(用的代数式表示),并证明你猜想的等式是正确的.
观察下列一组数:,,它们是按一定规律排列的,那么这组数的第个数可用含的式子表示为 .
如图,阶梯图的每个台阶上都标着一个数,从下到上的第1个至第4个台阶上依次标着,,1,9,且任意相邻四个台阶上数的和都相等.
尝试 (1)求前4个台阶上数的和是多少?
(2)求第5个台阶上的数是多少?
应用 求从下到上前31个台阶上数的和.
发现 试用含为正整数)的式子表示出数“1”所在的台阶数.
观察以下等式:
第1个等式:,
第2个等式:,
第3个等式:,
第4个等式:,
第5个等式:,
按照以上规律,解决下列问题:
(1)写出第6个等式: ;
(2)写出你猜想的第个等式: (用含的等式表示),并证明.