如图,固定在水平桌面上的“∠”型平行导轨足够长,间距L=1m,电阻不计。倾斜导轨的倾角θ=53º,并与R=2Ω的定值电阻相连。整个导轨置于磁感应强度B=5T、方向垂直倾斜导轨平面向上的匀强磁场中。金属棒ab、cd的阻值为R1=R2=2Ω,cd棒质量m=1kg。ab与导轨间摩擦不计,cd与导轨间的动摩擦因数μ=0.3,设最大静摩擦力等于滑动摩擦力。现让ab棒从导轨上某处由静止释放,当它滑至某一位置时,cd棒恰好开始滑动。
(1)求此时通过ab棒的电流;
(2)求导体棒cd消耗的热功率与ab棒克服安培力做功的功率之比;
(3)若ab棒无论从多高的位置释放,cd棒都不动,则ab棒质量应小于多少?
(4)假如cd棒与导轨间的动摩擦因数可以改变,则当动摩擦因数满足什么条件时,无论ab棒质量多大、从多高位置释放,cd棒始终不动?
如图所示,质量为m=0.1kg粗细均匀的导线,绕制成闭合矩形线框,其中长LAC=50cm,宽LAB=20cm,竖直放置在水平面上。中间有一磁感应强度B=1.0T,磁场宽度d=10cm的匀强磁场。线框在水平向右的恒力F=2N的作用下,由静止开始沿水平方向运动,使AB边进入磁场,从右侧以v=1m/s的速度匀速运动离开磁场,整个过程中始终存在大小恒定的阻力Ff=1N,且线框不发生转动。求线框AB边:
(1)离开磁场时感应电流的大小;
(2)刚进入磁场时感应电动势的大小;
(3)求线框穿越磁场的过程中产生的焦耳热。
如图所示,是固定在绝缘水平面上的光滑金属导轨,长度,夹角为,且单位长度的电阻均为,导轨处于磁感应强度大小为,方向垂直纸面向里的匀强磁场中,是一根金属杆,长度大于,电阻忽略不计。现在外力作用下以速度在上匀速滑行,始终与导轨接触良好,并且与确定的直线保持平行。求:(1)在导轨上滑行过程中受安培力与滑行位移的关系表达式并画出图象;(2)滑行全过程中构成回路所产生的焦耳热和通过点截面的电量。
如图所示,两根足够长的光滑金属导轨MN、PQ间距为L=0.5m,其电阻不计,两导轨及其构成的平面均与水平面成30°角。完全相同的两金属棒ab、cd分别垂直导轨放置,每棒两端都与导轨始终有良好接触,已知两棒的质量均为0.02kg,电阻均为R=0.1Ω,整个装置处在垂直于导轨平面向上的匀强磁场中,磁感应强度为B=0.2T,棒ab在平行于导轨向上的力F作用下,沿导轨向上匀速运动,而棒cd恰好能保持静止。取g=10m/s2,问:
(1)通过cd棒的电流I是多少,方向如何?
(2)棒ab受到的力F多大?
(3)力F的功率P是多少?
如图甲,单匝圆形线圈c与电路连接,电阻R2两端与平行光滑金属直导轨p1e1f1、p2e2f2连接.垂直于导轨平面向下、向上有矩形匀强磁场区域Ⅰ、Ⅱ,它们的边界为e1e2,区域Ⅰ中垂直导轨并紧靠e1e2平放一导体棒ab.两直导轨分别与同一竖直平面内的圆形光滑绝缘导轨o1、o2相切连接,o1、o2在切点f1、f2处开有小口可让ab进入,ab进入后小口立即闭合.已知:o1、o2的直径和直导轨间距均为d,c的直径为2d;电阻R1、R2的阻值均为R,其余电阻不计;直导轨足够长且其平面与水平面夹角为,区域Ⅰ的磁感强度为B0.重力加速度为g.在c中边长为d的正方形区域内存在垂直线圈平面向外的匀强磁场,磁感强度B随时间t变化如图乙所示,ab在t=0~内保持静止.
(1)求ab静止时通过它的电流大小和方向;
(2)求ab的质量m;
(3)设ab进入圆轨道后能达到离f1f2的最大高度为h,要使ab不脱离圆形轨道运动,求区域Ⅱ的磁感强度B2的取值范围并讨论h与B2的关系式.
电阻可忽略的光滑平行金属导轨长S=1.15m,两导轨间距L="0.75" m,导轨倾角为30°,导轨上端ab接一阻值R=1.5Ω的电阻,磁感应强度B=0.8T的匀强磁场垂直轨道平面向上。阻值r=0.5Ω,质量m=0.2kg的金属棒与轨道垂直且接触良好,从轨道上端ab处由静止开始下滑至底端,在此过程中金属棒产生的焦耳热。(取)求:
(1)金属棒在此过程中克服安培力的功;
(2)金属棒下滑速度时的加速度.
(3)为求金属棒下滑的最大速度,有同学解答如下:由动能定理,……。由此所得结果是否正确?若正确,说明理由并完成本小题;若不正确,给出正确的解答。
如图所示,平行光滑U形导轨倾斜放置,倾角,导轨间的距离L=1.0m,电阻R==3.0Ω,电容器电容C=,导轨电阻不计,匀强磁场的方向垂直于导轨平面向上,磁感应强度B=2.0T,质量m=0.4kg,电阻r=1.0Ω的金属棒ab垂直置于导轨上,现用沿轨道平面且垂直于金属棒的大小F=5.0N的恒力,使金属棒ab从静止起沿导轨向上滑行,求:
(1)金属棒ab达到匀速运动时的速度大小();
(2)金属棒ab从静止开始匀速运动的过程中通过电阻的电荷量。
如图所示,足够长的光滑平行金属导轨MN、PQ倾斜放置,两导轨间距离为L,导轨平面与水平面间的夹角θ,所处的匀强磁场垂直于导轨平面向上,质量为m的金属棒ab垂直于导轨放置,导轨和金属棒接触良好,不计导轨和金属棒ab的电阻,重力加速度为g。若在导轨的M、P两端连接阻值R的电阻,将金属棒ab由静止释放,则在下滑的过程中,金属棒ab沿导轨下滑的稳定速度为v,若在导轨 M、P两端将电阻R改接成电容为C的电容器,仍将金属棒ab由静止释放,金属棒ab下滑时间t,此过程中电容器没有被击穿,求:
(1)匀强磁场的磁感应强度的大小为多少?
(2)金属棒ab下滑ts末的速度?
如图甲所示,MN、PQ为间距L=0.5m足够长的平行导轨,NQ⊥MN,导轨的电阻均不计。导轨平面与水平面间的夹角θ=37°,NQ间连接有一个R=4Ω的电阻。有一匀强磁场垂直于导轨平面且方向向上,磁感应强度为B0=1T。将一根质量为m=0.05kg有一定阻值的金属棒ab紧靠NQ放置在导轨上,且与导轨接触良好。现由静止释放金属棒,当金属棒滑行至cd处时达到稳定速度,已知在此过程中通过金属棒截面的电量q=0.2C,且金属棒的加速度a与速度v的关系如图乙所示,设金属棒沿导轨向下运动过程中始终与NQ平行。(sin37°=0.6,cos37°=0.8)。求:
(1)金属棒与导轨间的动摩擦因数μ
(2)cd离NQ的距离s
(3)金属棒滑行至cd处的过程中,电阻R上产生的热量
(4)若将金属棒滑行至cd处的时刻记作t=0,从此时刻起,让磁感应强度逐渐减小,为使金属棒中不产生感应电流,则磁感应强度B应怎样随时间t变化(写出B与t的关系式)。
如图,两条相距l的光滑平行金属导轨位于同一水平面(纸面)内,其左端接一阻值为R的电阻;一与导轨垂直的金属棒置于两导轨上;在电阻、导轨和金属棒中间有一面积为S的区域,区域中存在垂直于纸面向里的均匀磁场,磁感应强度打下B 1随时间t的变化关系为 ,式中k为常量;在金属棒右侧还有一匀强磁场区域,区域左边界MN(虚线)与导轨垂直,磁场的磁感应强度大小为B 0 , 方向也垂直于纸面向里。某时刻,金属棒在一外加水平恒力的作用下从静止开始向右运动,在t 0时刻恰好以速度v 0越过MN,此后向右做匀速运动。金属棒与导轨始终相互垂直并接触良好,它们的电阻均忽略不计。求
(1)在 到 时间间隔内,流过电阻的电荷量的绝对值;
(2)在时刻 穿过回路的总磁通量和金属棒所受外加水平恒力的大小。
如图所示,宽度的足够长的U形金属框架水平放置,框架中连接电阻,框架处在竖直向上的匀强磁场中,磁感应强度,框架导轨上放一根质量为、电阻,的金属棒,棒与导轨间的动摩擦因数,现用功率恒定的牵引力使棒从静止开始沿导轨运动(棒始终与导轨接触良好且垂直),当整个回路产生热量时刚好获得稳定速度,此过程中,通过棒的电量(框架电阻不计,取)求:
(1)当导体棒的速度达到时,导体棒上两点电势的高低?导体棒两端的电压?导体棒的加速度?
(2)导体棒稳定的速度?
(3)导体棒从静止到刚好获得稳定速度所用的时间?
在倾角θ=30°的斜面上,固定一金属框,宽L=0.5 m,接入电动势E =12V、内阻不计的电池和滑动变阻器。垂直框面放有一根质量m=0.1kg,电阻为r=1.6Ω的金属棒ab,不计它与框架间的摩擦力,不计框架电阻。整个装置放在磁感应强度B=0.8T,垂直框面向上的匀强磁场中,如图所示,调节滑动变阻器的阻值,当R的阻值为多少时,可使金属棒静止在框架上?(假设阻值R可满足需要)(g="10" m/s2)
如图甲所示,放置在水平桌面上的两条光滑导轨间的距离L=1m,质量m=1kg的光滑导体棒放在导轨上,导轨左端与阻值R=4Ω的电阻相连,导体棒和导轨的电阻不计。导轨所在位置有磁感应强度为B=2T的匀强磁场,磁场的方向垂直导轨平面向下,现在给导体棒施加一个水平向右的恒定拉力F,并每隔0.2s测量一次导体棒的速度,乙图是根据所测数据描绘出导体棒的v-t图象。(设导轨足够长)求:
(1)力F的大小。
(2)t=1.2s时,导体棒的加速度。
(3)估算1.6s内电阻上产生的热量。
如图所示,倾角θ=30°、宽为L=1m的足够长的U形光滑金属导轨固定在磁感应强度B=1T、范围足够大的匀强磁场中,磁场方向垂直导轨平面斜向上。现用一平行于导轨的F牵引一根质量m=0.2kg、电阻R=1Ω的导体棒ab由静止开始沿导轨向上滑动;牵引力的功率恒定为P=90W,经过t=2s导体棒刚达到稳定速度v时棒上滑的距离s=11.9m。导体棒ab始终垂直导轨且与导轨接触良好,不计导轨电阻及一切摩擦,取g=10m/s2。求:
(1)从开始运动到达到稳定速度过程中导体棒产生的焦耳热Q1;
(2)若在导体棒沿导轨上滑达到稳定速度前某时刻撤去牵引力,从撤去牵引力到棒的速度减为零的过程中通过导体棒的电荷量为q=0.48C,导体棒产生的焦耳热为Q2=1.12J,则撤去牵引力时棒的速度v′多大?
如图(a)两水平放置的平行金属板C、D相距很近(粒子通过加速电场的时间忽略不计),上面分别开有小孔O/、O,水平放置的平行金属导轨与C、D接触良好,且导轨在磁感强度为B1=10T的匀强磁场中,导轨间距L=0.50m,金属棒AB紧贴着导轨沿平行导轨方向在磁场中做往复运动,其速度图象如图(b)所示,若规定向右运动速度方向为正方向,从t=0时刻开始,由C板小孔O/处连续不断以垂直于C板方向飘入质量为m=3.2×10-21㎏、电量q=1.6×10-19C的带正电的粒子(设飘入速度很小,可视为零)。在D板外侧有以MN为边界的匀强磁场B2=10T,MN与D相距d=10cm,B1、B2方向如图所示(粒子重力及其相互作用不计)。求:
(1)在0~4.0s时间内哪些时刻发射的粒子能穿过电场并能飞出磁场边界MN?
(2)粒子从边界MN射出来的位置之间最大的距离是多少?