高中物理

(16分)如图所示,光滑的平行金属导轨水平放置,电阻不计,导轨间距为l,左侧接一阻值为R的电阻.区域cdef内存在垂直轨道平面向下的有界匀强磁场,磁场宽度为s。一质量为m、电阻为r的金属棒MN置于导轨上,与导轨垂直且接触良好,受到F=0.5v+0.4(N)(v为金属棒速度)的水平外力作用,从磁场的左边界由静止开始运动,测得电阻两端电压随时间均匀增大.(已知:l=1m,m=1kg,R=0.3Ω,r=0.2Ω,s=1m)

(1)判断该金属棒在磁场中是否做匀加速直线运动;
(2)求加速度的大小和磁感应强度B的大小;
(3)若撤去外力后棒的速度v随位移x的变化规律满足v=v0-x,且棒在运动到ef处时恰好静止,则外力F作用的时间为多少?
(4)若在棒未出磁场区域时撤出外力,画出棒在整个运动过程中速度随位移变化所对应的各种可能的图线.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

如图所示,在匀强磁场中有一倾斜的平行金属导轨,导轨间距为 L,长度为3d,导轨平面与水平面的夹角为θ,在导轨的中部长度为d 的一段刷有薄绝缘涂层。匀强磁场的磁感应强度大小为B,方向与导轨平面垂直。质量为m 的导体棒从导轨的顶端由静止释放,在滑上绝缘涂层之前已经做匀速运动,并一直匀速滑到导轨底端。导体棒始终与导轨垂直,且仅与绝缘涂层间有摩擦,接在两导轨间的电阻为R,其他部分的电阻均不计,重力加速度为g。求:

⑴导体棒与绝缘涂层间的动摩擦因数μ;
⑵导体棒匀速运动的速度大小v;
⑶整个运动过程中,电阻R产生的电热Q.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

两平行金属光滑导轨间的距离,导轨所在平面与水平面之间的夹角为,在导轨所在的空间内分布着磁感应强度大小、方向垂直于导轨所在平面向上的匀强磁场,导轨的一端接有水平放置的线圈,内阻,面积为,匝数匝。已知线圈平面内有垂直平面向上的磁场的变化率均匀减小,现将一质量kg、内阻的导体棒垂直导轨放置,与导轨接触良好,开关S接通后撤去外力导体棒能保持静止,重力加速度。()求:

(1)线圈上产生的电动势大小;
(2)通过定值电阻的电流大小.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

如图所示,光滑斜面的倾角α=30°,在斜面上放置一矩形线框abcd,ab边的边长L1=1m,bc边的边长L2=0.4m,线框的质量m=1kg,电阻R=0.2Ω。斜面上ef线(ef∥gh)的右方有垂直斜面向上的均匀磁场,磁感应强度B随时间t的变化情况如B-t图像,ef线和gh的距离s=6.9m,t=0时线框在平行于斜面向上的恒力F=10N的作用下从静止开始运动,线框进入磁场的过程中始终做匀速直线运动,重力加速度

(1)求线框进入磁场前的加速度大小和线框进入磁场时做匀速运动的速度v大小;
(2)求线框进入磁场的过程中产生的焦耳热;
(3)求线框从开始运动到ab边运动到 gh线处所用的时间。

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

如图甲所示,在真空中,半径为R的圆形区域内存在匀强磁场,磁场方向垂直纸面向外。在磁场左侧有一对平行金属板M、N,两板间距离也为R,板长为L,板的中心线O1O2与磁场的圆心O在同一直线上。置于O1处的粒子发射源可连续以速度v0沿两板的中线O1O2发射电荷量为q、质量为m的带正电的粒子(不计粒子重力),MN两板不加电压时,粒子经磁场偏转后恰好从圆心O的正下方P点离开磁场;若在M、N板间加如图乙所示交变电压UMN,交变电压的周期为,t=0时刻入射的粒子恰好贴着N板右侧射出。求

(1)匀强磁场的磁感应强度B的大小
(2)交变电压电压U0的值
(3)若粒子在磁场中运动的最长、最短时间分别为t1、t 2 ,则它们的差值为多大?

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

如图所示,足够长的平行光滑金属导轨水平放置,宽度L="0.4" m,一端连接R=1Ω的电阻。导轨所在空间存在竖直向下的匀强磁场,磁感应强度B=1T。把电阻r=1Ω的导体棒MN放在导轨上,其长度恰好等于导轨间距,与导轨接触良好。导轨的电阻可忽略不计。在平行于导轨的拉力F作用下,导体棒沿导轨向右匀速运动,速度v="5" m/s。求:

(1)感应电流I和导体棒两端的电压U;
(2)拉力F的大小;
(3)拉力F的功率
(4)电路中产生的热功率

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

如图甲所示,abcd是位于竖直平面内的正方形闭合金属线框,金属线框的质量为m,电阻为R,在金属线框的下方有一匀强磁场区域,MN和PQ是匀强磁场区域的水平边界。并与线框的bc边平行,磁场方向垂直于线框平面向里。现使金属线框从MN上方某一高度处由静止开始下落,如图乙是金属线框由开始下落到完全穿过匀强磁场区域瞬间的v-t图象,图中字母均为已知量。重力加速度为g,不计空气阻力。求:

(1)金属线框的边长;
(2)金属线框在进入磁场的过程中通过线框截面的电量;
(3)金属线框在0~t4时间内安培力做的总功。

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

在倾角θ=45°的斜面上,固定一金属导轨间距L=0.2m,接入电动势E=10V、内阻r=1Ω的电源,垂直导轨放有一根质量m=0.2kg的金属棒ab,它与框架的动摩擦因数μ=,整个装置放在磁感应强度的大小B=4(﹣1)T,方向垂直导轨平面向上的匀强磁场中,如图所示,若金属棒静止在导轨架上,其所受最大静摩擦力等于滑动摩擦力,框架与棒的电阻不计,g=10m/s2.求滑动变阻器R能接入电路的电大阻值.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

如图所示装置由水平轨道、倾角θ=37°的倾斜轨道连接而成,轨道所在空间存在磁感应强度大小为B、方向竖直向上的匀强磁场。质量m、长度L、电阻R的导体棒ab置于倾斜轨道上,刚好不下滑;质量、长度、电阻与棒ab相同的光滑导体棒cd置于水平轨道上,用恒力F拉棒cd,使之在水平轨道上向右运动。棒ab、cd与导轨垂直,且两端与导轨保持良好接触,最大静摩擦力等于滑动摩擦力,sin37°=0.6,cos37°=0.8。

⑴求棒ab与导轨间的动摩擦因数
⑵求当棒ab刚要向上滑动时cd速度v的大小;
⑶若从cd刚开始运动到ab刚要上滑过程中,cd在水平轨道上移动的距离x,求此过程中ab上产生热量Q。

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

边长为L=0.2 m的正方形区域内有垂直纸面向里的匀强磁场,穿过该区域磁场的磁感应强度随时间变化的图象如图乙所示。将边长为L/2,匝数n=100,线圈电阻r=1.0 Ω的正方形线圈abcd放入磁场,线圈所在平面与磁感线垂直,如图甲所示。求:

(1)回路中感应电流的方向及磁感应强度的变化率
(2)在0~4.0 s内通过线圈的电荷量q;
(3)0~6.0 s内整个闭合电路中产生的热量。

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

如图所示,匀强磁场竖直向上穿过水平放置的金属框架,框架宽为L,右端接有电阻R,磁感应强度为B,一根质量为m、电阻不计的金属棒以v0的初速度沿框架向左运动,棒与框架的动摩擦因数为μ,测得棒在整个运动过程中,通过任一截面的电量为q求:

(1)棒能运动的距离;
(2)R上产生的热量.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

如图所示,匀强磁场B1垂直水平光滑金属导轨平面向下,垂直导轨放置的导体棒ab在平行于导轨的外力F作用下做匀加速直线运动,通过两线圈感应出电压,使电压表示数U保持不变。已知变阻器最大阻值为R,且是定值电阻R2 的三倍,平行金属板MN相距为d。在电场作用下,一个带正电粒子从O1由静止开始经O2小孔垂直AC边射入第二个匀强磁场区,该磁场的磁感应强度为B2,方向垂直纸面向外,其下边界AD距O1O2连线的距离为h。已知场强B2 =B,设带电粒子的电荷量为q、质量为m,则高度,请注意两线圈绕法,不计粒子重力。求:

(1)试判断拉力F能否为恒力以及F的方向(直接判断);
(2)调节变阻器R的滑动头位于最右端时,MN两板间电场强度多大?
(3)保持电压表示数U不变,调节R的滑动头,带电粒子进入磁场B2后都能击中AD边界,求粒子打在AD边界上的落点距A点的距离范围。

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

如图所示,两根足够长的光滑平行金属导轨MN、PQ间距为L="0.5" m,其电阻不计,两导轨及其构成的平面均与水平面成30°角,完全相同的两金属棒ab、cd分别垂直导轨放置,每棒两端都与导轨始终有良好接触.已知两棒质量均为m="0.02" kg,电阻均为R="0.1" Ω,整个装置处在垂直于导轨平面向上的匀强磁场中,磁感应强度B=0.2 T,棒ab在平行于导轨向上的力F作用下,沿导轨向上匀速运动,而棒cd恰好能够保持静止.取g="10" m/s2,问:

(1)通过棒cd的电流I是多少,方向如何?
(2)棒ab受到的力F多大?
(3)棒cd每产生Q="0.1" J的热量,力F做的功W是多少?

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

有一金属细棒ab,质量m=0.05kg,电阻不计,可在两条轨道上滑动,如图所示,轨道间距为L=0.5m,其平面与水平面的夹角为θ=37°,置于垂直于轨道平面向上的匀强磁场中,磁感应强度为B=1.0T,金属棒与轨道的动摩擦因数μ=0.5,(设最大静摩擦力与滑动摩擦力大小相等)回路中电源电动势为E=3V,内阻r=0.5Ω.(g=10m/s2,sin37°=0.6,cos37°=0.8)求:

(1)为保证金属细棒不会沿斜面向上滑动,流过金属细棒ab的电流的最大值为多少?
(2)滑动变阻器R的阻值应调节在什么范围内,金属棒能静止在轨道上?

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

如图(a)为一研究电磁感应的实验装置示意图,其中电流传感器(电阻不计)能将各时刻的电流数据实时通过数据采集器传输给计算机,经计算机处理后在屏幕上同步显示出I-t图像。平行且足够长的光滑金属轨道的电阻忽略不计,导轨平面与水平方向夹角θ=30°。轨道上端连接一阻值R=1.0Ω的定值电阻,金属杆MN的电阻r=0.5Ω,质量m=0.2kg,杆长L=1m跨接在两导轨上。在轨道区域加一垂直轨道平面向下的匀强磁场,闭合开关s,让金属杆MN从图示位置由静止开始释放,其始终与轨道垂直且接触良好。此后计算机屏幕上显示出如图(b)所示的,I-t图像(g取10m/s2),求:

(1)匀强磁场的磁感应强度B的大小和在t=0.5s时电阻R的热功率;
(2)估算0~1.2s内通过电阻R的电荷量及在R上产生的焦耳热;
(3)若在2.0s时刻断开开关S,请定性分析金属杆MN 0~4.0s末的运动情况;并在图(c)中定性画出金属杆MN 0~4.0s末的速度随时间的变化图像。

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

高中物理法拉第电磁感应定律计算题