如图所示,两根足够长的平行金属导轨固定在倾角=300的斜面上,导轨电阻不计,间距L=0.4m。导轨所在空间被分成区域I和Ⅱ,两区域的边界与斜面的交线为MN,I中的匀强磁场方向垂直斜面向下,Ⅱ中的匀强磁场方向垂直斜面向上,两磁场的磁场感应度大小均为B=0.5T,在区域I中,将质量m1=0.1kg,电阻R1=0.1的金属条ab放在导轨上,ab刚好不下滑。然后,在区域Ⅱ中将质量m2=0.4kg,电阻R2=0.1的光滑导体棒cd置于导轨上,由静止开始下滑,cd在滑动过程中始终处于区域Ⅱ的磁场中,ab、cd始终与轨道垂直且两端与轨道保持良好接触,取g=10m/s2,问
(1)cd下滑的过程中,ab中的电流方向;
(2)ab将要向上滑动时,cd的速度v多大;
(3)从cd开始下滑到ab刚要向上滑动的过程中,cd滑动的距离x=3.8m,此过程中ab上产生的热量Q是多少。
如图所示,质量为m的足够长的“[”金属导轨abcd放在倾角为θ的光滑绝缘斜面上,bc段电阻为R,其余段电阻不计。另一电阻为R、质量为m的导体棒PQ放置在导轨上,始终与导轨接触良好,PbcQ构成矩形。棒与导轨间动摩擦因数为μ,棒左侧有两个固定于斜面的光滑立柱。导轨bc段长为L,以ef为界,其左侧匀强磁场垂直斜面向上,右侧匀强磁场方向沿斜面向上,磁感应强度大小均为B。在t=0时,一沿斜面方向的作用力F垂直作用在导轨的bc边上,使导轨由静止开始沿斜面向下做匀加速直线运动,加速度为a。
(1)请通过计算证明开始一段时间内PQ中的电流随时间均匀增大。
(2)求在电流随时间均匀增大的时间内棒PQ横截面内通过的电量q和导轨机械能的变化量△E。
(3)请在F-t图上定性地画出电流随时间均匀增大的过程中作用力F随时间t变化的可能关系图,并写出相应的条件。(以沿斜面向下为正方向)
如图,无限长的平行光滑金属轨道M、N,相距L,且水平放置;金属棒b和c之间通过绝缘轻弹簧相连,弹簧处于压缩状态,并锁定,压缩量为;整个装置放在磁感强度为B的匀强磁场中,磁场方向与轨道平面垂直.两棒开始静止,某一时刻,解除弹簧的锁定,两棒开始运动.已知两金属棒的质量mb=2mc=m,电阻Rb=RC=R,轨道的电阻不计.
(1)求当弹簧第一次恢复原长的过程中,通过导体棒某一横截面的电量.
(2)已知弹簧第一次恢复原长时,b棒速度大小为v,求此时c棒的加速度。
在如图甲所示的电路中,螺线管匝数n=1000匝,横截面积S=20cm2.螺线管导线电阻r=1.0,R1=3.0,R2=4.0,C=30μF.在一段时间内,穿过螺线管的磁场的磁感应强度B按如图乙所示的规律变化.求:
(1)求螺线管中产生的感应电动势;
(2)S断开后,求流经R2的电量.
如图(a)两水平放置的平行金属板C、D相距很近(粒子通过加速电场的时间忽略不计),上面分别开有小孔O/、O,水平放置的平行金属导轨与C、D接触良好,且导轨在磁感强度为B1=10T的匀强磁场中,导轨间距L=0.50m,金属棒AB紧贴着导轨沿平行导轨方向在磁场中做往复运动,其速度图象如图(b)所示,若规定向右运动速度方向为正方向,从t=0时刻开始,由C板小孔O/处连续不断以垂直于C板方向飘入质量为m=3.2×10-21㎏、电量q=1.6×10-19C的带正电的粒子(设飘入速度很小,可视为零)。在D板外侧有以MN为边界的匀强磁场B2=10T,MN与D相距d=10cm,B1、B2方向如图所示(粒子重力及其相互作用不计)。求:
(1)在0~4.0s时间内哪些时刻发射的粒子能穿过电场并能飞出磁场边界MN?
(2)粒子从边界MN射出来的位置之间最大的距离是多少?
如图所示,有两根足够长、不计电阻,相距L的平行光滑金属导轨cd、ef与水平面成θ角固定放置,底端接一阻值为R的电阻,在导轨平面内有磁感应强度为B的匀强磁场,方向垂直于导轨平面斜向上。现有一平行于ce,垂直于导轨,质量为m,电阻不计的金属杆ab,在沿导轨平面向上的恒定拉力F作用下,从底端ce由静止开始沿导轨向上运动,当ab杆速度达到稳定后,撤去拉力F,最后ab杆又沿轨道匀速回到ce端。已知ab杆向上和向下运动的最大速度相等。求:
(1)ab杆最后回到ce端的速度大小
(2)拉力F的大小
如图所示,无限长金属导轨EF、PQ固定在倾角为θ=53°的光滑绝缘斜面上,轨道间距L="1" m,底部接入一阻值为R=0.4Ω的定值电阻,上端开口。垂直斜面向上的匀强磁场的磁感应强度B=2T。一质量为m=0.5kg的金属棒ab与导轨接触良好,ab与导轨间动摩擦因数μ=0.2,ab连入导轨间的电阻r=0.1Ω,电路中其余电阻不计。现用一质量为M=2.86kg的物体通过一不可伸长的轻质细绳绕过光滑的定滑轮与ab相连。由静止释放M,当M下落高度h="2.0" m时,ab开始匀速运动(运动中ab始终垂直导轨,并接触良好)。不计空气阻力,sin53°=0.8,cos53°=0.6,取g=10m/s2。求:
(1)ab棒沿斜面向上运动的最大速度vm;
(2)ab棒从开始运动到匀速运动的这段时间内电阻R上产生的焦耳热QR和流过电阻R的总电荷量q。
如图所示,在磁感应强度B=0.2T的水平匀强磁场中,有一边长为L=10cm,匝数N=100匝,电阻r=1Ω的正方形线圈绕垂直于磁感线的轴匀速转动,转速r/s,有一电阻R=9Ω,通过电刷与两滑环接触,R两端接有一理想电压表,求:
(1)若从线圈通过中性面时开始计时,写出电动势瞬时值表达式;
(2)求从中性面开始转过T时的感应电动势与电压表的示数;
(3在1分钟内外力驱动线圈转动所作的功;
如图,两条相距l的光滑平行金属导轨位于同一水平面(纸面)内,其左端接一阻值为R的电阻;一与导轨垂直的金属棒置于两导轨上;在电阻、导轨和金属棒中间有一面积为S的区域,区域中存在垂直于纸面向里的均匀磁场,磁感应强度打下B 1随时间t的变化关系为 ,式中k为常量;在金属棒右侧还有一匀强磁场区域,区域左边界MN(虚线)与导轨垂直,磁场的磁感应强度大小为B 0 , 方向也垂直于纸面向里。某时刻,金属棒在一外加水平恒力的作用下从静止开始向右运动,在t 0时刻恰好以速度v 0越过MN,此后向右做匀速运动。金属棒与导轨始终相互垂直并接触良好,它们的电阻均忽略不计。求
(1)在 到 时间间隔内,流过电阻的电荷量的绝对值;
(2)在时刻 穿过回路的总磁通量和金属棒所受外加水平恒力的大小。
如图所示,宽度的足够长的U形金属框架水平放置,框架中连接电阻,框架处在竖直向上的匀强磁场中,磁感应强度,框架导轨上放一根质量为、电阻,的金属棒,棒与导轨间的动摩擦因数,现用功率恒定的牵引力使棒从静止开始沿导轨运动(棒始终与导轨接触良好且垂直),当整个回路产生热量时刚好获得稳定速度,此过程中,通过棒的电量(框架电阻不计,取)求:
(1)当导体棒的速度达到时,导体棒上两点电势的高低?导体棒两端的电压?导体棒的加速度?
(2)导体棒稳定的速度?
(3)导体棒从静止到刚好获得稳定速度所用的时间?
在倾角θ=30°的斜面上,固定一金属框,宽L=0.5 m,接入电动势E =12V、内阻不计的电池和滑动变阻器。垂直框面放有一根质量m=0.1kg,电阻为r=1.6Ω的金属棒ab,不计它与框架间的摩擦力,不计框架电阻。整个装置放在磁感应强度B=0.8T,垂直框面向上的匀强磁场中,如图所示,调节滑动变阻器的阻值,当R的阻值为多少时,可使金属棒静止在框架上?(假设阻值R可满足需要)(g="10" m/s2)
如图甲所示,放置在水平桌面上的两条光滑导轨间的距离L=1m,质量m=1kg的光滑导体棒放在导轨上,导轨左端与阻值R=4Ω的电阻相连,导体棒和导轨的电阻不计。导轨所在位置有磁感应强度为B=2T的匀强磁场,磁场的方向垂直导轨平面向下,现在给导体棒施加一个水平向右的恒定拉力F,并每隔0.2s测量一次导体棒的速度,乙图是根据所测数据描绘出导体棒的v-t图象。(设导轨足够长)求:
(1)力F的大小。
(2)t=1.2s时,导体棒的加速度。
(3)估算1.6s内电阻上产生的热量。
如图所示,倾角θ=30°、宽为L=1m的足够长的U形光滑金属导轨固定在磁感应强度B=1T、范围足够大的匀强磁场中,磁场方向垂直导轨平面斜向上。现用一平行于导轨的F牵引一根质量m=0.2kg、电阻R=1Ω的导体棒ab由静止开始沿导轨向上滑动;牵引力的功率恒定为P=90W,经过t=2s导体棒刚达到稳定速度v时棒上滑的距离s=11.9m。导体棒ab始终垂直导轨且与导轨接触良好,不计导轨电阻及一切摩擦,取g=10m/s2。求:
(1)从开始运动到达到稳定速度过程中导体棒产生的焦耳热Q1;
(2)若在导体棒沿导轨上滑达到稳定速度前某时刻撤去牵引力,从撤去牵引力到棒的速度减为零的过程中通过导体棒的电荷量为q=0.48C,导体棒产生的焦耳热为Q2=1.12J,则撤去牵引力时棒的速度v′多大?
如图(a)两水平放置的平行金属板C、D相距很近(粒子通过加速电场的时间忽略不计),上面分别开有小孔O/、O,水平放置的平行金属导轨与C、D接触良好,且导轨在磁感强度为B1=10T的匀强磁场中,导轨间距L=0.50m,金属棒AB紧贴着导轨沿平行导轨方向在磁场中做往复运动,其速度图象如图(b)所示,若规定向右运动速度方向为正方向,从t=0时刻开始,由C板小孔O/处连续不断以垂直于C板方向飘入质量为m=3.2×10-21㎏、电量q=1.6×10-19C的带正电的粒子(设飘入速度很小,可视为零)。在D板外侧有以MN为边界的匀强磁场B2=10T,MN与D相距d=10cm,B1、B2方向如图所示(粒子重力及其相互作用不计)。求:
(1)在0~4.0s时间内哪些时刻发射的粒子能穿过电场并能飞出磁场边界MN?
(2)粒子从边界MN射出来的位置之间最大的距离是多少?