如图所示,有两根足够长、不计电阻,相距L的平行光滑金属导轨cd、ef与水平面成θ角固定放置,底端接一阻值为R的电阻,在导轨平面内有磁感应强度为B的匀强磁场,方向垂直于导轨平面斜向上。现有一平行于ce,垂直于导轨,质量为m,电阻不计的金属杆ab,在沿导轨平面向上的恒定拉力F作用下,从底端ce由静止开始沿导轨向上运动,当ab杆速度达到稳定后,撤去拉力F,最后ab杆又沿轨道匀速回到ce端。已知ab杆向上和向下运动的最大速度相等。求:
(1)ab杆最后回到ce端的速度大小
(2)拉力F的大小
如图所示,在磁感应强度B=0.2T的水平匀强磁场中,有一边长为L=10cm,匝数N=100匝,电阻r=1Ω的正方形线圈绕垂直于磁感线的轴匀速转动,转速r/s,有一电阻R=9Ω,通过电刷与两滑环接触,R两端接有一理想电压表,求:
(1)若从线圈通过中性面时开始计时,写出电动势瞬时值表达式;
(2)求从中性面开始转过T时的感应电动势与电压表的示数;
(3在1分钟内外力驱动线圈转动所作的功;
如图1所示,一端封闭的两条平行光滑长导轨相距L,距左端L处的右侧一段被弯成半径为的四分之一圆弧,圆弧导轨的左、右两段处于高度相差的水平面上。以弧形导轨的末端点O为坐标原点,水平向右为x轴正方向,建立Ox坐标轴。圆弧导轨所在区域无磁场;左段区域存在空间上均匀分布,但随时间t均匀变化的磁场B(t),如图2所示;右段区域存在磁感应强度大小不随时间变化,只沿x方向均匀变化的磁场B(x),如图3所示;磁场B(t)和B(x)的方向均竖直向上。在圆弧导轨最上端,放置一质量为m的金属棒ab,与导轨左段形成闭合回路,金属棒由静止开始下滑时左段磁场B(t)开始变化,金属棒与导轨始终接触良好,经过时间t0金属棒恰好滑到圆弧导轨底端。已知金属棒在回路中的电阻为R,导轨电阻不计,重力加速度为g.
(1)求金属棒在圆弧轨道上滑动过程中,回路中产生的感应电动势E;
(2)如果根据已知条件,金属棒能离开右段磁场B(x)区域,离开时的速度为v,求金属棒从开始滑动到离开右段磁场过程中产生的焦耳热Q;
(3)如果根据已知条件,金属棒滑行到x=x1位置时停下来,
a.求金属棒在水平轨道上滑动过程中通过导体棒的电荷量q;
b.通过计算,确定金属棒在全部运动过程中感应电流最大时的位置。
如图所示,有一区域足够大的匀强磁场,磁感应强度为B,磁场方向与水平放置的导轨垂直,导轨宽度为L,右端接有电阻R,MN是一根质量为m的金属棒,金属棒与导轨垂直放置,且接触良好,金属棒与导轨电阻均不计,金属棒与导轨间的动摩擦因数为μ,现给金属棒一水平冲量,使它以初速度沿导轨向左运动,已知金属棒在整个运动过程中,通过任一截面的总电荷量为q,求:
(1)金属棒运动的位移s;
(2)金属棒运动过程中回路产生的焦耳热Q;
(3)金属棒运动的时间t
如图甲所示,相距为L的光滑平行金属导轨水平放置,导轨一部分处在以OO′为右边界匀强磁场中,匀强磁场的磁感应强度大小为B,方向垂直导轨平面向下,导轨右侧接有定值电阻R,导轨电阻忽略不计。在距边界OO′也为L处垂直导轨放置一质量为m、电阻r的金属杆ab。
(1)若金属杆ab固定在导轨上的初位置,磁场的磁感应强度在t时间内由B均匀减小到零,求此过程中电阻R上产生的电量q。
(2)若ab杆在恒力作用下由静止开始向右运动3L距离,其速度—位移的关系图象如图乙所示(图中所示量为已知量)。求此过程中电阻R上产生的焦耳热Q1。
(3)若ab杆固定在导轨上的初始位置,使匀强磁场保持大小不变绕OO′轴匀速转动。若磁场方向由图示位置开始转过的过程中,电路中产生的焦耳热为Q2. 则磁场转动的角速度ω大小是多少?
如图甲所示,水平面上的两光滑金属导轨平行固定放置,间距d=0.5 m,电阻不计,左端通过导线与阻值R=2 Ω的电阻连接,右端通过导线与阻值RL=4 Ω的小灯泡L连接。在CDFE矩形区域内有竖直向上的匀强磁场,CE长l=2 m,有一阻值r=2 Ω的金属棒PQ放置在靠近磁场边界CD处(恰好不在磁场中)。CDFE区域内磁场的磁感应强度B随时间变化如图乙所示。在t=0至t=4 s 内,金属棒PQ保持静止,在t=4 s时使金属棒PQ以某一速度进入磁场区域并保持匀速运动。已知从t=0开始到金属棒运动到磁场边界EF处的整个过程中,小灯泡的亮度没有发生变化。求:
(1)通过小灯泡的电流;
(2)金属棒PQ在磁场区域中运动的速度大小。
如图所示,有一光滑、不计电阻且较长的“"平行金属导轨,间距L="l" m,导轨所在的平面与水平面的倾角为3 7°,导轨空间内存在垂直导轨平面的匀强磁场。现将一质量m=0.1kg、电阻R=2的金属杆水平靠在导轨处,与导轨接触良好。(g=l0m/s2,sin37°=0.6 cos37°=0.8)
(1)若磁感应强度随时间变化满足B=2+0.2t(T),金属杆由距导轨顶部l m处释放,求至少经过多长时间释放,会获得沿斜面向上的加速度;
(2)若匀强磁场大小为定值,对金属杆施加一个平行于导轨斜面向下的外力F,其大小为为金属杆运动的速度,使金属杆以恒定的加速度a=10m/s2沿导轨向下做匀加速运动,求匀强磁场磁感应强度B的大小;
(3)若磁感应强度随时间变化满足时刻金属杆从离导轨顶端So="l" m处静止释放,同时对金属杆施加一个外力,使金属杆沿导轨下滑且没有感应电流产生,求金属杆下滑5 m所用的时间。
如图所示,在竖直平面内有宽度为L足够长的金属导轨,导轨间有垂直纸面向里的匀强磁场,磁感应强度大小为B0,导轨上有一导体棒在外力作用下以速度v0向左匀速运动;P、Q为竖直平面内两平行金属板,分别用导线和M、N相连,P、Q板长为d,间距也为d, P、Q板间虚线右侧为垂直纸面向里的匀强磁场,磁感应强度大小为B。现有一电量为q的带正电小球,从P、Q左边界的中点水平射入,进入磁场后做匀速圆周运动,重力加速度取g。求:
(1)带电小球的质量m;
(2)能够打在P板上的带电小球在磁场中运动的最短时间;
(3)能够打在P板上的带电小球速度v的取值范围。
如图所示,凸字形硬质金属线框质量为
,相邻各边互相垂直,且处于同一竖直平面内,
边长为
,
边长为
,
与
平行,间距为
。匀强磁场区域的上下边界均水平,磁场方向垂直于线框所在平面。开始时,
边到磁场上边界的距离为
,线框由静止释放,从
边进入磁场直到
、
边进入磁场前,线框做匀速运动,在
、
边离开磁场后,
边离开磁场之前,线框又做匀速运动。线框完全穿过磁场过程中产生的热量为
。线框在下落过程中始终处于原竖直平面内,且
.
边保持水平,重力加速度为
;求
(1)线框
边将离开磁场时做匀速运动的速度大小是
边刚进入磁场时的几倍
(2)磁场上下边界间的距离
水平面上有电阻不计的U形导轨MNPQ,宽度为L,N和P之间接入电动势为E的电源(不计内阻)。现垂直导轨放置质量为m、电阻为R的金属棒ab,金属棒与导轨间的动摩擦因数为μ,并加范围较大的、磁感应强度大小为B匀强磁场,磁场方向与水平面夹角为θ且指向右上方,如图所示。求:
(1)当ab棒静止时,ab棒受到的支持力和摩擦力各为多少?
(2)若B的大小和方向均能改变,则要使ab棒所受支持力为零,B的大小至少为多少?此时B的方向如何?
(3)若B的大小和方向均能改变,则要使ab棒恰好处于静止状态,B的大小至少为多少?此时B的方向如何?
如图,两条相距l的光滑平行金属导轨位于同一水平面(纸面)内,其左端接一阻值为R的电阻;一与导轨垂直的金属棒置于两导轨上;在电阻、导轨和金属棒中间有一面积为S的区域,区域中存在垂直于纸面向里的均匀磁场,磁感应强度打下B 1随时间t的变化关系为 ,式中k为常量;在金属棒右侧还有一匀强磁场区域,区域左边界MN(虚线)与导轨垂直,磁场的磁感应强度大小为B 0 , 方向也垂直于纸面向里。某时刻,金属棒在一外加水平恒力的作用下从静止开始向右运动,在t 0时刻恰好以速度v 0越过MN,此后向右做匀速运动。金属棒与导轨始终相互垂直并接触良好,它们的电阻均忽略不计。求
(1)在 到 时间间隔内,流过电阻的电荷量的绝对值;
(2)在时刻 穿过回路的总磁通量和金属棒所受外加水平恒力的大小。
如图所示,宽度的足够长的U形金属框架水平放置,框架中连接电阻,框架处在竖直向上的匀强磁场中,磁感应强度,框架导轨上放一根质量为、电阻,的金属棒,棒与导轨间的动摩擦因数,现用功率恒定的牵引力使棒从静止开始沿导轨运动(棒始终与导轨接触良好且垂直),当整个回路产生热量时刚好获得稳定速度,此过程中,通过棒的电量(框架电阻不计,取)求:
(1)当导体棒的速度达到时,导体棒上两点电势的高低?导体棒两端的电压?导体棒的加速度?
(2)导体棒稳定的速度?
(3)导体棒从静止到刚好获得稳定速度所用的时间?
在倾角θ=30°的斜面上,固定一金属框,宽L=0.5 m,接入电动势E =12V、内阻不计的电池和滑动变阻器。垂直框面放有一根质量m=0.1kg,电阻为r=1.6Ω的金属棒ab,不计它与框架间的摩擦力,不计框架电阻。整个装置放在磁感应强度B=0.8T,垂直框面向上的匀强磁场中,如图所示,调节滑动变阻器的阻值,当R的阻值为多少时,可使金属棒静止在框架上?(假设阻值R可满足需要)(g="10" m/s2)
如图甲所示,放置在水平桌面上的两条光滑导轨间的距离L=1m,质量m=1kg的光滑导体棒放在导轨上,导轨左端与阻值R=4Ω的电阻相连,导体棒和导轨的电阻不计。导轨所在位置有磁感应强度为B=2T的匀强磁场,磁场的方向垂直导轨平面向下,现在给导体棒施加一个水平向右的恒定拉力F,并每隔0.2s测量一次导体棒的速度,乙图是根据所测数据描绘出导体棒的v-t图象。(设导轨足够长)求:
(1)力F的大小。
(2)t=1.2s时,导体棒的加速度。
(3)估算1.6s内电阻上产生的热量。
如图所示,倾角θ=30°、宽为L=1m的足够长的U形光滑金属导轨固定在磁感应强度B=1T、范围足够大的匀强磁场中,磁场方向垂直导轨平面斜向上。现用一平行于导轨的F牵引一根质量m=0.2kg、电阻R=1Ω的导体棒ab由静止开始沿导轨向上滑动;牵引力的功率恒定为P=90W,经过t=2s导体棒刚达到稳定速度v时棒上滑的距离s=11.9m。导体棒ab始终垂直导轨且与导轨接触良好,不计导轨电阻及一切摩擦,取g=10m/s2。求:
(1)从开始运动到达到稳定速度过程中导体棒产生的焦耳热Q1;
(2)若在导体棒沿导轨上滑达到稳定速度前某时刻撤去牵引力,从撤去牵引力到棒的速度减为零的过程中通过导体棒的电荷量为q=0.48C,导体棒产生的焦耳热为Q2=1.12J,则撤去牵引力时棒的速度v′多大?