高中数学

已知二次函数经过坐标原点,当 时有最小值,数列的前项和为,点均在函数的图象上。
(1)求函数的解析式;      
(2)求数列的通项公式;
(3)设是数列的前项和,求使得对所有都成立的最小正整数

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

(本小题满分13分)已知数列的前项和,等差数列
(1)求数列的通项公式;
(2)是否存在正整数,使得 若存在,求出的最小值,若不存在,请说明理由.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

已知椭圆的中心在原点,焦点在轴上,离心率为,右焦点到右顶点的距离为
(1)求椭圆的标准方程;
(2)是否存在与椭圆交于两点的直线,使得成立?若存在,求出实数的取值范围,若不存在,请说明理由.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

(本小题满分10分)选修4-4:坐标系与参数方程
在直角坐标系xOy中,曲线M的参数方程为为参数),若以直角坐标系中的原点O为极点,x轴的正半轴为极轴建立极坐标系,曲线N的极坐标方程为(t为参数).
(Ⅰ)求曲线M和N的直角坐标方程,
(Ⅱ)若曲线N与曲线M有公共点,求t的取值范围.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

(本小题满分12分)已知函数,其中均为实数.
(Ⅰ)求函数的极值;
(Ⅱ)设,若对任意的恒成立,求实数的最小值;

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

已知数列的前n项和是,且
(1)证明:为等比数列;
(2)证明:
(3)为数列的前n项和,设,是否存在正整数m,k,使成立,若存在,求出m,k;若不存在,说明理由.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

已知函数
(Ⅰ)求的单调递减区间;
(Ⅱ)若对于任意,都有成立,求实数的取值范围.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

(本小题15分)已知△ABC三个顶点的坐标分别是A(0,2),B(1,1),C(1,3).若△ABC在一个切变变换T作用下变为△A1B1C1,其中B(1,1)在变换T作用下变为点B1(1,-1).
(1)求切变变换T所对应的矩阵M;
(2)将△A1B1C1绕原点按顺时针方向旋转45°后得到△A2B2C2.求B1变化后的对应点B2的坐标.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

如图,已知抛物线的顶点D的坐标为(1,),且与x轴交于A、B两点,与y轴交于C点,A点的坐标为(4,0).P点是抛物线上的一个动点,且横坐标为m.

(l)求抛物线所对应的二次函数的表达式;
(2)若动点P满足∠PAO不大于45°,求P点的横坐标m的取值范围;
(3)当P点的横坐标时,过p点作y轴的垂线PQ,垂足为Q.问:是否存在P点,使∠QPO=∠BCO?若存在,请求出P点的坐标;若不存在,请说明理由.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

阅读理解材料一:一组对边平行,另一组对边不平行的四边形叫梯形,其中平行的两边叫梯形的底边,不平行的两边叫梯形的腰,连接梯形两腰中点的线段叫梯形的中位线.梯形的中位线具有以下性质:梯形的中位线平行于两底,并且等于两底和的一半.
如图(1):在梯形ABCD中:AD∥BC,
∵E、F是AB、CD的中点,∴EF∥AD∥BC,EF=(AD+BC)

材料二:经过三角形一边的中点与另一边平行的直线必平分第三边
如图(2):在△ABC中:∵E是AB的中点,EF∥BC
∴F是AC的中点

请你运用所学知识,结合上述材料,解答下列问题.
如图(3)在梯形ABCD中,AD∥BC,AC⊥BD于O,E、F分别为AB、CD的中点,∠DBC=30°.

(1)求证:EF=AC;
(2)若OD=,OC=5,求MN的长.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

如图,是坐标原点,过点的抛物线轴的另一个交点为,与轴交于点,其顶点为点.

(1)求的值.
(2)连结,动点的坐标为
①当四边形是平行四边形时,求的值;
②连结,当最大时,求出点的坐标.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

已知:如图,点A(3,4)在直线y=kx上,过A作AB⊥x轴于点B.

(1)求k的值;
(2)设点B关于直线y=kx的对称点为C点,求ΔABC外接圆的面积;
(3)抛物线y=-1与x轴的交点为Q,试问在直线y=kx上是否存在点P,使得
∠CPQ=∠OAB,如果存在,请求出P点的坐标;如果不存在,请说明理由.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

如图,在平面直角坐标系中,矩形OCDE的三个顶点分别是C(3,0),D(3,4),E(0,4).点A在DE上,以A为顶点的抛物线过点C,且对称轴x=1交x轴于点B.连接EC,AC.点P,Q为动点,设运动时间为t秒.

(1)填空:点A坐标为  ;抛物线的解析式为            
(2)在图1中,若点P在线段OC上从点O向点C以1个单位/秒的速度运动,同时,点Q在线段CE上从点C向点E以2个单位/秒的速度运动,当一个点到达终点时,另一个点随之停止运动.当t为何值时,△PCQ为直角三角形?
(3)在图2中,若点P在对称轴上从点A开始向点B以1个单位/秒的速度运动,过点P做PF⊥AB,交AC于点F,过点F作FG⊥AD于点G,交抛物线于点Q,连接AQ,CQ.当t为何值时,△ACQ的面积最大?最大值是多少?

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

如图,在矩形OABC中,AO=10,AB=8,沿直线CD折叠矩形OABC的一边BC,使点B落在OA边上的点E处.分别以OC,OA所在的直线为x轴,y轴建立平面直角坐标系,抛物线y=ax2+bx+c经过O,D,C三点.

(1)求AD的长及抛物线的解析式;
(2)一动点P从点E出发,沿EC以每秒2个单位长的速度向点C运动,同时动点Q从点C出发,沿CO以每秒1个单位长的速度向点O运动,当点P运动到点C时,两点同时停止运动.设运动时间为t秒,当t为何值时,以P、Q、C为顶点的三角形与△ADE相似?
(3)点N在抛物线对称轴上,点M在抛物线上,是否存在这样的点M与点N,使以M,N,C,E为顶点的四边形是平行四边形?若存在,请直接写出点M与点N的坐标(不写求解过程);若不存在,请说明理由.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

【问题探究】
(1)如图1,锐角△ABC中,分别以AB、AC为边向外作等腰△ABE和等腰△ACD,使AE=AB,AD=AC,∠BAE=∠CAD,连接BD,CE,试猜想BD与CE的大小关系,并说明理由.
【深入探究】
(2)如图2,四边形ABCD中,AB=7cm,BC=3cm,∠ABC=∠ACD=∠ADC=45º,求BD的长.
(3)如图3,在(2)的条件下,当△ACD在线段AC的左侧时,求BD的长.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

高中数学解答题