高中数学

已知函数,其中
(1)当时,求曲线的点处的切线方程;
(2)当时,若在区间上的最小值为-2,求的取值范围;
(3)若,且 恒成立,求的取值范围.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

如图,三棱柱中,平面, 点在线段上,且

(Ⅰ)求证:直线与平面不平行;
(Ⅱ)设平面与平面所成的锐二面角为,若,求的长;
(Ⅲ)在(Ⅱ)的条件下,设平面平面,求直线所成的角的余弦值.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

已知数列的前项和为,且
(1)求的通项公式;
(2)设,若恒成立,求实数的取值范围;
(3)设,是数列的前项和,证明

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

已知函数,设
(1)证明:,且
(2)若对任意满足条件的恒成立,求实数的最大值.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

已知函数
(1)求的单调区间;
(2)若方程有四个不等实根,求实数的取值范围.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

某学校假期后勤维修的一项工作是请30名木工制作200把椅子和100张课桌.已知一名工人在单位时间内可制作10把椅子或7张课桌.将这30名工人分成两组,一组制作课桌,一组制作椅子,两组同时开工.设制作课桌的工人为名.
(1)分别用含的式子表示制作200把椅子和100张课桌所需的单位时间;
(2)当为何值时,完成此项工作的时间最短?

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

如图,是直角梯形底边的中点,,将△沿折起形成四棱锥

(1)求证:平面
(2)若二面角,求二面角的正切值.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

如图,已知正方形和矩形所在的平面互相垂直,是线段的中点.

(1)求三棱锥的体积;
(2)求与平面所成的角大小.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

已知函数
(1)若x=2是函数f(x)的极值点,求曲线y=f(x)在点(1,f(1))处的切线方程;
(2)若函数f(x)在上为单调增函数,求a的取值范围;
(3)设m,n为正实数,且m>n,求证:

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

如图所示,AD⊥平面ABC,CE⊥平面ABC,AC=AD=AB=1,,凸多面体ABCED的体积为,F为BC的中点.

(1)求证:AF∥平面BDE;
(2)求证:平面BDE⊥平面BCE.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

某同学用“五点法”画函数在某一个周期的图象时,列表并填入了部分数据,如下表:

(1)请求出上表中的,并直接写出函数f(x)的解析式;
(2)将f(x)的图象沿x轴向右平移个单位得到函数g(x),若函数g(x)在(其中)上的值域为,且此时其图象的最高点和最低点分别为P,Q,求夹角的大小.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

已知数列满足,
(1)求证:数列是等比数列,并求出通项公式
(2)若数列是数列的前项和,求证:

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

如图1,在Rt△ABC中,∠C=90°,BC=6,AC=3,D,E分别是AC,AB上的点,且DE∥BC,DE=4,将△ADE沿DE折起到△A1DE的位置,使A1C⊥CD,如图2.

(1)求证:平面
(2)过点E作截面平面,分别交CB于F,于H,求截面的面积。

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

如图,正方体中,E为AB中点,F为正方形BCC1B1的中心.

(1)求直线EF与平面ABCD所成角的正切值;
(2)求异面直线A1C与EF所成角的余弦值.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

已知两直线.试确定的值,使
(1)相交于点
(2)
(3),且轴上的截距为-1.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

高中数学解答题