某学校假期后勤维修的一项工作是请30名木工制作200把椅子和100张课桌.已知一名工人在单位时间内可制作10把椅子或7张课桌.将这30名工人分成两组,一组制作课桌,一组制作椅子,两组同时开工.设制作课桌的工人为名.(1)分别用含的式子表示制作200把椅子和100张课桌所需的单位时间;(2)当为何值时,完成此项工作的时间最短?
已知函数 (1)当时,求的单调递增区间; (2)当且时,的值域是求的值
已知函数=, (1)求函数的单调区间 (2)若关于的不等式对一切(其中)都成立,求实数的取值范围; (3)是否存在正实数,使?若不存在,说明理由;若存在,求取值的范围
椭圆:的右焦点为且为常数,离心率为,过焦点、倾斜角为的直线交椭圆与M,N两点, (1)求椭圆的标准方程; (2)当=时,=,求实数的值; (3)试问的值是否与直线的倾斜角的大小无关,并证明你的结论
已知抛物线的焦点与椭圆的右焦点重合,抛物线的顶点在坐标原点,过点的直线与抛物线交于A,B两点, (1)写出抛物线的标准方程 (2)求⊿ABO的面积最小值
已知函数, (1)求的单调递减区间; (2)若在区间上的最大值为20,求它在该区间的最小值