在中,内角对边分别为,且.
(Ⅰ)求角的大小;
(Ⅱ)若,求的值.
已知定义域为的奇函数.
(1)解不等式;
(2)对任意,总有,求实数的取值范围.
(本小题满分14分)如图,在三棱锥P- ABC中,已知平面PBC 平面ABC.
(1)若ABBC,CPPB,求证:CPPA:
(2)若过点A作直线⊥平面ABC,求证://平面PBC.
(本小题满分14分)如图,在直三棱柱中,,、分别是,的中点.
(1)求证:∥平面;
(2)求证:平面平面;
(3)若,,求三棱锥的体积.
(本小题满分12分)已知向量.令,
(1)求的最小正周期;
(2)当时,求的最小值以及取得最小值时的值.
(本小题满分12分)已知,其中,,.
(Ⅰ)求的单调递减区间;
(Ⅱ)在△ABC中,角A,B,C所对的边分别为a,b,c,,,且向量与共线,求边长b和c的值.
(本小题共13分)设数列的前项和为,且.
(1)求数列的通项公式;
(2)若数列满足,求数列的通项公式.
提高过江大桥的车辆通行能力可改善整个城市的交通状况.在一般情况下,大桥上的车流速度v(单位:千米/小时)是车流密度(单位:辆/千米)的函数.当桥上的车流密度达到200辆/千米时,造成堵塞,此时车流速度为0;当车流密度不超过20辆/千米时,车流速度为60千米/小时,研究表明:当时,车流速度是车流密度x的一次函数.
(Ⅰ)当时,求函数的表达式;
(Ⅱ)当车流密度为多大时,车流量(单位时间内通过桥上某观点的车辆数,单位:辆/每小时)可以达到最大,并求出最大值(精确到1辆/小时)。
(本小题满分14分)已知函数,(a为实数).
(1) 当a=5时,求函数在处的切线方程;
(2) 求在区间[t,t+2](t >0)上的最小值;
(Ⅲ) 若存在两不等实根,使方程成立,求实数a的取值范围.
已知椭圆的焦距为,且过点.
(1)求椭圆的方程;
(2)已知,是否存在使得点关于的对称点(不同于点)在椭圆上?若存在求出此时直线的方程,若不存在说明理由.
(本小题8分)如图,在直三棱柱 中,AB=AC,D、E分别是棱BC、 上的点(点D不在BC的端点处),且ADDE,F为 的中点.
(1)求证:平面ADE平面;
(2)求证:平面ADE.