已知函数的图象在点处的切线的斜率为2.(Ⅰ)求实数的值;(Ⅱ)设,讨论的单调性;(Ⅲ)已知且,证明:
如图,在七面体ABCDMN中,四边形ABCD是边长为2的正方形,平面ABCD,平面ABCD,且(1)在棱AB上找一点Q,使QP//平面AMD,并给出证明;(2)求平面BNC与平面MNC所成锐二面角的余弦值.
在△ABC中,角A,B,C所对的边分别为,且..(1)求的值;(2)若面积的最大值.
设函数,其中.(1)当时,求曲线在点处的切线的斜率;(2)求函数的单调区间与极值;(3)已知函数由三个互不相同的零点,且,若对任意的,恒成立,求实数的取值范围.
已知递增的等比数列的前n项和满足:,且是和的等差中项(1)求数列的通项公式;(2)若,求使成立的正整数n的值.
已知向量,且,若相邻两对称轴的距离不小于.(1)求正实数的取值范围;(2)在中,分别是的对边,,当最大时,,试求的面积.