已知函数,其中.
(1)当时,求函数的图象在点处的切线方程;
(2)如果对于任意,都有,求的取值范围.
(本小题满分15分)
已知函数其中e为自然对数的底数。
(I)若函数f (x)在[1, 2]上为单调增函数,求实数a的取值范围;
(II)设曲线y=" f" (x)在点P(1, f (1))处的切线为l .试问:是否存在正实数a ,使得函数y=" f" (x)的图象被点P 分割成的两部分(除点P 外)完全位于切线l 的两侧?若存在,请求出a 满足的条件,若不存在,请说明理由.
若曲线与曲线在它们的公共点处具有公共切线,则实数( )
A. | B. | C. | D. |
设函数 f (x)=ax-lnx-3(a∈R),g(x)=xe1-x.
(Ⅰ)若函数 g(x) 的图象在点 (0,0) 处的切线也恰为 f (x) 图象的一条切线,求实数 a的值;
(Ⅱ)是否存在实数a,对任意的 x∈(0,e],都有唯一的 x0∈[e-4,e],使得 f (x0)=g(x) 成立.若存在,求出a的取值范围;若不存在,请说明理由.
注:e是自然对数的底数.
已知函数,其中为实数,常数.
(1) 若是函数的一个极值点,求的值;
(2) 当取正实数时,求函数的单调区间;
(3) 当时,直接写出函数的所有减区间.
已知函数∈R).
(1)若,求点()处的切线方程;
(2)设a≤0,求的单调区间;
(3)设a<0,且对任意的,≤,试比较与的大小.