设函数 f (x)=ax-lnx-3(a∈R),g(x)=xe1-x.(Ⅰ)若函数 g(x) 的图象在点 (0,0) 处的切线也恰为 f (x) 图象的一条切线,求实数 a的值;(Ⅱ)是否存在实数a,对任意的 x∈(0,e],都有唯一的 x0∈[e-4,e],使得 f (x0)=g(x) 成立.若存在,求出a的取值范围;若不存在,请说明理由.注:e是自然对数的底数.
对于集合M,定义函数对于两个集合M,N,定义集合. 已知A={2,4,6,8,10},B={1,2,4,8,16}.(Ⅰ)写出和的值,并用列举法写出集合;(Ⅱ)用Card(M)表示有限集合M所含元素的个数.(ⅰ)求证:当取得最小值时,2∈M;(ⅱ)求的最小值.
已知函数f(x)对任意实数x,y,均有f(x+y)=f(x)+f(y),且当x>0时,f(x)>0,f(-1)=-2,求f(x)在区间[-2,1]上的值域.
已知f (x)是R上的偶函数,且在(0,+ )上单调递增,并且f (x)<0对一切成立,试判断在(-,0)上的单调性,并证明你的结论.
证明:函数f(x)=在(-2,+¥)上是增函数.
已知A=,B=.(Ⅰ)若,求的取值范围;(Ⅱ)若,求的取值范围.