甲、乙两篮球运动员互不影响地在同一位置投球,命中率分别为与,且乙投球2次均未命中的概率是. 求:(1)乙投球的命中率;(2)甲投球2次,至少命中1次的概率;(3)若甲、乙二人各投球2次,求两人共命中2次的概率
(满分12分)设函数. (Ⅰ)求函数的单调递增区间; (II)若关于的方程在区间内恰有两个相异的实根,求实数的取值范围.
(满分12分)已知椭圆的一个顶点为B,离心率, 直线l交椭圆于M、N两点. (Ⅰ)求椭圆的标准方程; (II)如果ΔBMN的重心恰好为椭圆的右焦点F,求直线的方程.
(满分12分)如右图,在正三棱柱ABC—A1B1C1中,AA1=AB,D是AC的中点。 (Ⅰ)求证:B1C//平面A1BD; (Ⅰ)求二面角A—A1B—D的余弦值。
(满分12分)以下茎叶图记录了甲、乙两组各四名同学的植树棵树.乙组记录中有一个数据模糊,无法确认,在图中以X表示. (Ⅰ)如果X=8,求乙组同学植树棵树的平均数和方差; (II)如果X=9,分别从甲、乙两组中随机选取一名同学,求这两名同学的植树总棵数为19的概率.
(满分12分)设数列的前项和为.已知,,。 (Ⅰ)求数列的通项公式; (Ⅱ)记为数列的前项和,求;