抛物线经过点、与,
其中,,设函数在和处取到极值.
(1)用表示;
(2) 比较的大小(要求按从小到大排列);
(3)若,且过原点存在两条互相垂直的直线与曲线均相切,求的解析式.
(本小题满分15分)已知函数
(Ⅰ)求的值;
(Ⅱ)若曲线过原点的切线与函数的图像有两个交点,试求b的取值范围.
(本大题13分)已知函数(为常数)
(1)若在区间上单调递减,求的取值范围;
(2)若与直线相切:
(ⅰ)求的值;
(ⅱ)设在处取得极值,记点M (,),N(,),P(), , 若对任意的m (, x),线段MP与曲线f(x)均有异于M,P的公共点,试确定的最小值,并证明你的结论.
(本小题12分)
已知函数
(1)判断函数在上的单调性;
(2)是否存在实数,使曲线在点处的切线与轴垂直?若存在,求出的值;若不存在,请说明理由.
设函数,(1)若函数在处与直线相切;
(1) ①求实数的值; ②求函数上的最大值;
(2)当时,若不等式对所有的都成立,求实数的取值范围.
设函数,,其中,a、b为常数,已知曲线在点(2,0)处有相同的切线。
(1)求a、b的值,并写出切线的方程;
(2)求函数单调区间与极值。