(本大题13分)已知函数(为常数)(1)若在区间上单调递减,求的取值范围;(2)若与直线相切:(ⅰ)求的值;(ⅱ)设在处取得极值,记点M (,),N(,),P(), , 若对任意的m (, x),线段MP与曲线f(x)均有异于M,P的公共点,试确定的最小值,并证明你的结论.
设曲线:,表示的导函数。 (Ⅰ)当时,求函数的单调区间; (Ⅱ)求函数的极值; (Ⅲ)当时,对于曲线上的不同两点,是否存在唯一,使直线的斜率等于?并证明你的结论。
如图,在直三棱柱中, (1)求证 (2)在上是否存在点使得 (3)在上是否存在点使得?
已知函数. (Ⅰ)若曲线在点处的切线与直线垂直,求函数的单调区间; (Ⅱ)若对于都有成立,试求的取值范围;
如图,正三棱柱的所有棱长都为2,为中点。 (1)求证:面; (2)求二面角的余弦值; (3)求点到平面的距离。
如图,已知三棱锥的侧棱两两垂直,且,,是的中点。 (1)求异面直线与所成角的余弦值; (2)求和平面所成角的正弦值。