高中数学

如图,四棱锥PABCD中,PA⊥底面ABCD,PA=2,BC="CD=2," ∠ACB=∠ACD=.

(1)求证:BD⊥平面PAC;
(2)若侧棱PC上的点F满足PF=7FC,求三棱锥PBDF的体积.

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

如图,在直棱柱ABCA1B1C1中,∠BAC=90°,AB=AC=,AA1=3,D是BC的中点,点E在棱BB1上运动.

(1)证明:AD⊥C1E;
(2)当异面直线AC,C1E所成的角为60°时,求三棱锥C1A1B1E的体积.

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

如图,四棱柱ABCDA1B1C1D1的底面ABCD是正方形,O是底面中心,A1O⊥底面ABCD,AB=AA1=.

(1)证明:平面A1BD∥平面CD1B1;
(2)求三棱柱ABDA1B1D1的体积.

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

如图,四面体ABCD中,△ABC与△DBC都是边长为4的正三角形.

(1)求证:BCAD
(2)试问该四面体的体积是否存在最大值?若存在,求出这个最大值及此时棱长AD的大小;若不存在,请说明理由.

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

已知四棱锥PABCD的正视图是一个底边长为4、腰长为3的等腰三角形,如图分别是四棱锥PABCD的侧视图和俯视图.

(1)求证:ADPC
(2)求四棱锥PABCD的侧面PAB的面积.

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

一个几何体的三视图如下图所示,已知正(主)视图是底边长为1的平行四边形,侧(左)视图是一个长为,宽为1的矩形,俯视图为两个边长为1的正方形拼成的矩形.

(1)求该几何体的体积V
(2)求该几何体的表面积S.

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

如图,在三棱柱ABCA1B1C1中,侧棱AA1⊥底面ABCABBCDAC的中点,AA1AB=2,BC=3.

(1)求证:AB1∥平面BC1D
(2)求四棱锥BAA1C1D的体积.

来源:2014年高考数学(文)二轮专题复习与测试专题4第3课时练习卷
  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

如图四棱柱ABCDA1B1C1D1的底面ABCD是正方形,O是底面中心,A1O⊥底面ABCDABAA1.

(1)证明:平面A1BD∥平面CD1B1
(2)求三棱柱ABDA1B1D1的体积.

来源:2014年高考数学(文)二轮专题复习与测试专题4第3课时练习卷
  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

如图,已知平行四边形ABCD中,BC=2,BD⊥CD,四边形ADEF为正方形,平面ADEF⊥平面ABCD.记CD=x,V(x)表示四棱锥F-ABCD的体积.

(1)求V(x)的表达式.
(2)求V(x)的最大值.

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

如图,在长方体ABCD-A1B1C1D1中,AB=AD=3cm,AA1=2cm,则四棱锥A-BB1D1D的体积为    cm3.

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

已知直三棱柱中,中点,中点.

(1)求三棱柱的体积;
(2)求证:
(3)求证:∥面

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

如图,为圆的直径,点在圆上,且,矩形所在的平面和圆所在的平面互相垂直,且.

(1)设的中点为,求证:平面
(2)求四棱锥的体积.

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

右图为一简单组合体,其底面ABCD为正方形,PD⊥平面ABCD,EC∥PD,且PD=AD=2EC=2.

(1)请画出该几何体的三视图;
(2)求四棱锥BCEPD的体积.

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

在四棱锥中,的中点,的中点,

(1)求证:
(2)求证:
(3)求三棱锥的体积.

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

如图,菱形的边长为2,为正三角形,现将沿向上折起,折起后的点记为,且,连接

(1)若的中点,证明:平面
(2)求三棱锥的体积.

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

高中数学表面展开图解答题